Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.

Citation

Goni, G.J., R.E. Todd, S.R. Jayne, G. Halliwell, S. Glenn, J. Dong, R. Curry, R. Domingues, F. Bringas, L. Centurioni, S.F. DiMarco, T. Miles, J. Morell, L. Pomales, H.-S. Kim, P.E. Robbins, G.G. Gawarkiewicz, J. Wilkin, J. Heiderich, B. Baltes, J.J. Cione, G. Seroka, K. Knee, and E.R. Sanabia. 2017. Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts. Oceanography 30(2):92–103, https://doi.org/10.5670/oceanog.2017.227.

References

Black, P.G., E.A. D’Asaro, W.M. Drennan, J.R. Frency, P.P. Niiler, T.B. Sanford, E.J. Terrill, E.J. Walsh, and J.A. Zhang. 2007. Air-sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bulletin of the American Meteorological Society 88:357–374, https://doi.org/10.1175/BAMS-88-3-357.

Centurioni, L.R. 2010. Observations of large-amplitude nonlinear internal waves from a drifting array: Instruments and methods. Journal of Atmospheric and Oceanic Technology 27(10):1,711–1,731, https://doi.org/10.1175/2010JTECHO774.1.

Centurioni, L., A. Horányi, C. Cardinali, E. Charpentier, and R. Lumpkin. 2016. A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bulletin of the American Meteorological Society 98(2):231–238, https://doi.org/10.1175/BAMS-D-15-00080.1.

Chen, S., J.A. Cummings, J.M. Schmidt, E.R. Sanabia, and S.R. Jayne. 2017. Targeted ocean sampling guidance for tropical cyclones. Journal of Geophysical Research 122:3,505–3,518, https://doi.org/​10.1002/2017JC012727.

Chen, S.S., J.F. Price, W. Zhao, M.A. Donelan, and E.J. Walsh. 2007. The CBLAST hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bulletin of the American Meteorological Society 88:311–317, https://doi.org/10.1175/BAMS-88-3-311.

Cione, J.J. 2015. The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Monthly Weather Review 143(3):904–913, https://doi.org/10.1175/MWR-D-13-00380.1.

Cione, J.J., E. Kalina, E. Uhlhorn, and A. Damiano. 2016. Coyote unmanned aircraft system observations in Hurricane Edouard (2014). Earth and Space Science 3(9):370–380, https://doi.org/10.1002/2016EA000187.

D’Asaro, E.A., P.G. Black, L.R. Centurioni, Y.-T. Chang, S.S. Chen, R.C. Foster, H.C. Graber, P. Harr, V. Hormann, R.-C. Lien, and others. 2014. Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society 95(9):1,405–1,418, https://doi.org/10.1175/BAMS-D-12-00104.1.

Domingues, R., G. Goni, F. Bringas, S.-K. Lee, H.-S. Kim, G. Halliwell, J. Dong, J. Morell, and L. Pomales. 2015. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophysical Research Letters 42(17):7,131–7,138, https://doi.org/​10.1002/2015GL065378.

Dong, J., R. Domingues, G. Goni, G. Halliwell, H.-S. Kim, S.-K. Lee, M. Mehari, F. Bringas, J. Morell, and L. Pomales. 2017. Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Weather and Forecasting 32(3):1,143–1,159, https://doi.org/10.1175/WAF-D-16-0182.1.

Doyle, J.D., R.M. Hodur, S. Chen, Y. Jin, J.R. Moskaitis, S. Wang, E.A. Hendricks, H. Jin, and T.A. Smith. 2014. Tropical cyclone prediction using COAMPS-TC. Oceanography 27:104–115, https://doi.org/10.5670/oceanog.2014.72.

Glenn, S., T. Miles, G. Seroka, Y. Xu, R. Forney, F. Yu, H. Roarty, O. Schofield, and J. Kohut. 2016. Stratified coastal ocean interactions with tropical cyclones. Nature Communications 7:10887, https://doi.org/10.1038/ncomms10887.

Goni, G.J., J.A. Knaff, and I.-I. Lin. 2015. Tropical cyclone heat potential. State of the Climate in 2014. Bulletin of the American Meteorological Society 96(7):S121–S122, https://doi.org/​10.1175/2015BAMSStateoftheClimate.1.

Halliwell, G.R., M. Mehari, M. Le Hénaff, V.H. Kourafalou, Y.S. Androulidakis, H.-S. Kang, and R. Atlas. 2017a. North Atlantic Ocean OSSE system: Evaluation of operational ocean observing system components and supplemental seasonal observations for improving coupled tropical cyclone prediction. Journal of Operational Oceanography 10:1–22, https://doi.org/10.1080/​1755876X.2017.1322770.

Halliwell, G.R., M. Mehari, L.K. Shay, V.H. Kourafalou, H.-S. Kang, H.-S. Kim, J. Dong, and R. Atlas. 2017b. OSSE quantitative assessment of rapid-response prestorm ocean surveys to improve coupled tropical cyclone prediction. Journal of Geophysical Research 122, https://doi.org/​10.1002/2017JC012760.

Halliwell, G.R., L.K. Shay, J. Brewster, and W.J. Teague. 2011. Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Monthly Weather Review 139:921–945, https://doi.org/​10.1175/2010MWR3104.1.

Horányi, A., C. Cardinali, and L. Centurioni. 2017. The global numerical weather prediction impact of mean-sea-level pressure observations from drifting buoys. Quarterly Journal of the Royal Meteorological Society 143(703):974–985, https://doi.org/10.1002/qj.2981.

Hormann, V., L.R. Centurioni, L. Rainville, C.M. Lee, and L.J. Braasch. 2014. Response of upper ocean currents to Typhoon Fanapi. Geophysical Research Letters 41:3,995–4,003, https://doi.org/​10.1002/2014GL060317.

Jayne, S.R., and N.M. Bogue. 2017. Air-deployable profiling floats. Oceanography 30(2):29–31, https://doi.org/10.5670/oceanog.2017.214.

Legler, D.M., H.J. Freeland, R. Lumpkin, G. Ball, J.J. McPhaden, S. North, R. Crowley, G.J. Goni, U. Send, and M. Merrifield. 2015. The current status of the real-time in situ Global Ocean Observing System for operational oceanography. Journal of Operational Oceanography 8(S2):s189–s200, https://doi.org/10.1080/1755876X.2015.1049883.

Lin, I.-I., G.J. Goni, J.A. Knaff, C. Forbes, and M.M. Ali. 2012. Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Natural Hazards 66:1,481–1,500, https://doi.org/​10.1007/s11069-012-0214-5.

Mainelli, M., M. DeMaria, L.K. Shay, and G. Goni. 2008. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting 231:3–16, https://doi.org/10.1175/2007WAF2006111.1.

Miles, T., G. Seroka, J. Kohut, O. Schofield, and S. Glenn. 2015. Glider observations and modeling of sediment transport in Hurricane Sandy. Journal of Geophysical Research 120(3):1,771–1,791, https://doi.org/10.1002/2014JC010474.

Mrvaljevic, R.K., P.G. Black, L.R. Centurioni, Y.-T. Chang, E.A. D’Asaro, S.R. Jayne, C.M. Lee, R.-C. Lien, I.-I. Lin, J. Morzel, and others. 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophysical Research Letters 40:316–321, https://doi.org/10.1029/2012GL054282.

Price, J.F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography 11:153–175, https://doi.org/10.1175/1520-0485(1981)011​<0153:UORTAH>2.0.CO;2.

Price, J.F. 2009. Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Science 5(3):351–368, https://doi.org/10.5194/os-5-351-2009.

Riser, S.C., H.J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change 5:145–153, https://doi.org/10.1038/nclimate2872.

Rudnick, D.L. 2016. Ocean research enabled by underwater gliders. Annual Review of Marine Science 8:519–541, https://doi.org/10.1146/annurev-marine-122414-033913.

Sanabia, E.R., B.S. Barrett, P.G. Black, S. Chen, and J.A. Cummings. 2013. Real-time upper-ocean temperature observations from aircraft during operational hurricane reconnaissance missions: AXBT demonstration project year one results. Weather and Forecasting 28:1,404–1,422, https://doi.org/​10.1175/WAF-D-12-00107.1.

Sanford, T.B., J.F. Price, and J.B. Girton. 2011. Upper ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. Journal of Physical Oceanography 41:1,041–1,056, https://doi.org/10.1175/2010JPO4313.1.

Sanford, T.B., J.F. Price, J.B. Girton, and D.C. Webb. 2007. Highly resolved observations and simulations of the ocean response to a hurricane. Geophysical Research Letters 34, L13604, https://doi.org/10.1029/2007GL029679.

Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and S. Glenn. 2016. Hurricane Irene sensitivity to stratified coastal ocean cooling. Monthly Weather Review 144:3,507–3,530, https://doi.org/10.1175/MWR-D-15-0452.1.

Todd, R.E., D.L. Rudnick, J.T. Sherman, W.B. Owens, and L. George. 2017. Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. Journal of Atmospheric and Oceanic Technology 34(2):309–333, https://doi.org/10.1175/JTECH-D-16-0156.1.

Wang, J., K. Young, T. Hock, D. Lauritsen, D. Behringer, M. Black, J. Franklin, J. Halverson, J. Molinar, L. Nguyen, and others. 2015. A long-term, high-quality, high-vertical-resolution GPS dropsonde dataset for hurricane and other studies. Bulletin of the American Meteorological Society 96:961–973, https://doi.org/10.1175/BAMS-D-13-00203.1.

Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M.S. Peng. 2015. Tropical cyclone-ocean interaction in Typhoon Megi (2010): A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Journal of Geophysical Research 21:153–167, https://doi.org/10.1002/2015JD024198.

Zambon, J.B., R. He, and J.C. Warner. 2014. Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall. Geophysical Research Letters 41:8,935–8,943, https://doi.org/10.1002/2014GL061357.

Zedler, S.E., P.P. Niiler, D. Stammer, E. Terrill, and J. Morzel. 2009. Ocean’s response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds. Journal of Geophysical Research 114(C4), C04016, https://doi.org/10.1029/2008JC005205.

Zhang, H.-M., R.W. Reynolds, R. Lumpkin, R. Molinari, K. Arzayus, M. Johnson, and T.M. Smith. 2009. An integrated global observing system for sea surface temperature using satellites and in situ data: Research to operations. Bulletin of the American Meteorological Society 90(1):31–38, https://doi.org/10.1175/2008BAMS2577.1.

Zhao, Z., E.A. D’Asaro, and J.A. Nystuen. 2014. The sound of tropical cyclones. Journal of Physical Oceanography 44:2,763–2,778, https://doi.org/​10.1175/JPO-D-14-0040.1.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.