Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 04

View Issue TOC
Volume 32, No. 4
Pages 110 - 125

OpenAccess

Energy and Momentum Lost to Wake Eddies and Lee Waves Generated by the North Equatorial Current and Tidal Flows at Peleliu, Palau

By T.M. Shaun Johnston , Jennifer A. MacKinnon, Patrick L. Colin, Patrick J. Haley Jr., Pierre F.J. Lermusiaux, Andrew J. Lucas, Mark A. Merrifield, Sophia T. Merrifield, Chris Mirabito, Jonathan D. Nash, Celia Y. Ou, Mika Siegelman, Eric J. Terrill, and Amy F. Waterhouse 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The North Equatorial Current (NEC) transports water westward around numerous islands and over submarine ridges in the western Pacific. As the currents flow over and around this topography, the central question is: how are momentum and energy in the incident flow transferred to finer scales? At the south point of Peleliu Island, Palau, a combination of strong NEC currents and tides flow over a steep, submarine ridge. Energy cascades suddenly from the NEC via the 1 km scale lee waves and wake eddies to turbulence. These submesoscale wake eddies are observed every tidal cycle, and also in model simulations. As the flow in each eddy recirculates and encounters the incident flow again, the associated front contains interleaving temperature (T) structures with 1–10 m horizontal extent. Turbulent dissipation (ε) exceeds 105 W kg1 along this tilted and strongly sheared front. A train of such submesoscale eddies can be seen at least 50 km downstream. Internal lee waves with 1 km wavelengths are also observed over the submarine ridge. The mean form drag exerted by the waves (i.e., upward transport of eastward momentum) of about 1 Pa is sufficient to substantially reduce the westward NEC, if not for other forcing, and is greater than the turbulent bottom drag of about 0.1 Pa. The effect on the incident flow of the form drag from only one submarine ridge may be similar to the bottom drag along the entire coastline of Palau. The observed ε is also consistent with local dissipation of lee wave energy. The circulation, including lee waves and wake eddies, was simulated by a data-driven primitive equation ocean model. The model estimates of the form drags exerted by pressure drops across the submarine ridge and due to wake eddies were found to be about 10 times higher than the lee wave and turbulent bottom drags. The ridge form drag was correlated to both the tidal flow and winds while the submesoscale wake eddy drag was mainly tidal

Citation

Johnston, T.M.S., J.A. MacKinnon, P.L. Colin, P.J. Haley Jr., P.F.J. Lermusiaux, A.J. Lucas, M.A. Merrifield, S.T. Merrifield, C. Mirabito, J.D. Nash, C.Y. Ou, M. Siegelman, E.J. Terrill, and A.F. Waterhouse. 2019. Energy and momentum lost to wake eddies and lee waves generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography 32(4):110–125, https://doi.org/10.5670/oceanog.2019.417.

References

Arbic, B.K., O.B. Fringer, J.M. Klymak, F.T. Mayer, D.S. Trossman, and P. Zhu. 2019. Connecting process models of topographic wave drag to global eddying general circulation models. Oceanography 32(4):146–155, https://doi.org/​10.5670/oceanog.2019.420.

Blumberg, A.F., and G.L. Mellor. 1987. A description of a three-dimensional ocean circulation model. Pp. 1–16 in Three-dimensional Coastal Ocean Models. Coastal Estuarine Series vol. 4, N.S. Heaps, ed., American Geophysical Union, Washington, DC.

Chang, M.-H., T.Y. Tang, C.-R. Ho, and S.-Y. Chao. 2013. Kuroshio-induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research 118(3):1,508–1,519, https://doi.org/10.1002/jgrc.20151.

Colin, P.L. Ocean warming and the reefs of Palau. 2018. Oceanography 31(2):126–135, https://doi.org/​10.5670/oceanog.2018.214.

Colin, P.L., T.M.S. Johnston, J.A. MacKinnon, C.Y. Ou, D.L. Rudnick, E.J. Terrill, S.J. Lindfield, and H. Batchelor. 2019. Ngaraard Pinnacle, Palau: An undersea “Island” in the flow. Oceanography 32(4):164–175, https://doi.org/​10.5670/oceanog.2019.422.

Cummings, J., and O. Smedstad. 2013. Variational data analysis for the global ocean. Pp. 303–343 in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. II. S. Park and L. Xu, eds, Springer-Verlag, https://doi.org/​10.1007/978-3-642-35088-7_13.

D’Asaro, E.A. 1988. Generation of submesoscale vortices: A new mechanism. Journal of Geophysical Research 93(C6):6,685–6,693, https://doi.org/​10.1029/JC093iC06p06685.

Davies, P.A., P. Besley, and D.L. Boyer. 1989. An experimental study of flow past a triangular cape in a linearly stratified fluid. Dynamics of Atmospheres and Oceans 14:497–528, https://doi.org/​10.1016/0377-0265(89)90076-6.

Dewey, R.K., and W.R. Crawford. 1988. Bottom stress estimates from vertical dissipation rate profiles on the continental shelf. Journal of Physical Oceanography 18:1,167–1,177, https://doi.org/10.1175/1520-0485(1988)018​<1167:BSEFVD>2.0.CO;2.

Dong, C., J.C. McWilliams, and A.F. Shchepetkin. 2007. Island wakes in deep water. Journal of Physical Oceanography 37:962–981, https://doi.org/​10.1175/JPO3047.1.

Egbert, G., and S. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19(2):183–204, https://doi.org/​10.1175/​1520-0426(2002)019​<0183:EIMOBO>2.0.CO;2.

Garrett, C. 1995. Flow separation in the ocean. Pp. 119–124 in Topographic Interactions in the Ocean: Proceedings of the Aha Huliko’a Workshop.

Gill, A.E. 1982. Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

Gopalakrishnan, G., and B.D. Cornuelle. 2019. Palau’s effects on regional-scale ocean circulation. Oceanography 32(4):126–135, https://doi.org/​10.5670/​oceanog.2019.418.

Gula, J., M.J. Molemaker, and J.C. McWilliams. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications 7:12811, https://doi.org/10.1038/ncomms12811.

Haley, P.J. Jr., and P.F.J. Lermusiaux. 2010. Multiscale two-way embedding schemes for free-​surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimilation System.” Ocean Dynamics 60(6):1,497–1,537, https://doi.org/​10.1007/s10236-010-0349-4.

Haley, P.J. Jr., A. Agarwal, and P.F.J. Lermusiaux. 2015. Optimizing velocities and transports for complex coastal regions and archipelagos. Ocean Modelling 89:1–28, https://doi.org/10.1016/​j.ocemod.​2015.02.005.

Johnston, T.M.S., M.C. Schönau, T. Paluszkiewicz, J.A. MacKinnon, B.K. Arbic, P.L. Colin, M.H. Alford, M. Andres, L. Centurioni, H.C. Graber, and others. 2019. Flow Encountering Abrupt Topography (FLEAT): A multiscale observational and modeling program to understand how topography affects flows in the western North Pacific. Oceanography 32(4):10–21, https://doi.org/​10.5670/oceanog.2019.407.

Karnauskas, M., L.M. Chérubin, and C.B. Paris. 2011. Adaptive significance of the formation of multi-​species fish spawning aggregations near submerged capes. PLoS ONE 6(7):e22067, https://doi.org/​10.1371/journal.pone.0022067.

Kundu, P.K., and I.M. Cohen. 2002. Fluid Mechanics. Academic Press, 730 pp.

Leslie, W.G., P.J. Haley Jr., P.F.J. Lermusiaux, M.P. Ueckermann, O. Logutov, and J. Xu. 2010. MSEAS Manual. MSEAS Report 06, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

Logutov, O.G., and P.F.J. Lermusiaux. 2008. Inverse barotropic tidal estimation for regional ocean applications. Ocean Modelling 25(1–2):17–34, https://doi.org/10.1016/j.ocemod.2008.06.004.

Lucas, A.J., J.D. Nash, R. Pinkel, J.A. MacKinnon, A. Tandon, A. Mahadevan, M. Omand, M. Frielich, D. Sengupta, M. Ravichandran, and others. 2016. Adrift upon a salinity-stratified sea: A view of upper ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography 29(2):134–145, https://doi.org/10.5670/oceanog.2016.46.

MacKinnon, J.A., and M.C. Gregg. 2003. Mixing on the late-summer New England Shelf: Solibores, shear, and stratification. Journal of Physical Oceanography 33:1,476–1,492, https://doi.org/​10.1175/​1520-0485(2003)033​<1476:MOTLNE>​2.0.CO;2.

MacKinnon, J.A., M.H. Alford, G. Voet, K. Zeiden, T.M.S. Johnston, M. Siegelman, S. Merrifield, and M. Merrifield. 2019. Eddy wake generation from broadband currents near Palau. Journal of Geophysical Research 124(7):4,891–4,903, https://doi.org/10.1029/2019JC014945.

Magaldi, M., T. Özgökmen, A. Griffa, E. Chassignet, M. Iskandarani, and H. Peters. 2008. Turbulent flow regimes behind a coastal cape in a stratified and rotating environment. Ocean Modelling 25(1):65–82, https://doi.org/10.1016/​j.ocemod.2008.06.006.

McCabe, R.M., P. MacCready, and G. Pawlak. 2006. Form drag due to flow separation at a headland. Journal of Physical Oceanography 36(11):2,136–2,152, https://doi.org/10.1175/JPO2966.1.

Merrifield, S.T., P.L. Colin, T. Cook, C. Garcia-Moreno, J.A. MacKinnon, M. Otero, T.A. Schramek, M. Siegelman, H.L. Simmons, and E.J. Terrill. 2019. Island wakes observed from high-frequency current mapping radar. Oceanography 32(4):92–101, https://doi.org/10.5670/oceanog.2019.415.

Moum, J.N., M.C. Gregg, R.C. Lien, and M.E. Carr. 1995. Comparison of turbulent kinetic energy dissipation rate estimates from two ocean microstructure profilers. Journal of Atmospheric and Oceanic Technology 12:346–366, https://doi.org/10.1175/​1520-0426(1995)012<0346:COTKED>2.0.CO;2.

Moum, J.N., and J.D. Nash. 2000. Topographically induced drag and mixing at a small bank on the continental shelf. Journal of Physical Oceanography 30:2,049–2,054, https://doi.org/​10.1175/​1520-​0485​(2000)​030​<2049:​TIDAMA>​2.0.CO;2.

Musgrave, R.C., and T. Peacock. 2016. The momentum balance of steady flow past an island. Paper presented at the VIIIth International Symposium on Stratified Flows, August 29–September 1, 2016, San Diego, CA.

Nash, J.D., J. Marion, N. McComb, J.S. Nahorniak, R.H. Jackson, C. Perren, D. Winters, A. Pickering, J. Bruslind, L. Yong, and S.J.K. Lee. 2017. Autonomous CTD profiling from the Robotic Oceanographic Surface Sampler. Oceanography 30(2)110–112, https://doi.org/​10.5670/oceanog.2017.229.

Perlin, A., J.N. Moum, J. Klymak, M.D. Levine, T. Boyd, and M. Kosro. 2005. A modified law-of-the-wall applied to oceanic bottom boundary layers. Journal of Geophysical Research 110(C10), https://doi.org/10.1029/2004JC002310.

Pinkel, R., M.A. Goldin, J.A. Smith, O.M. Sun, A.A. Aja, M.N. Bui, and T. Hughen. 2011. The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. Journal of Atmospheric and Oceanic Technology 28(3):426–435, https://doi.org/​10.1175/​2010JTECHO805.1.

Qiu, B., D.L. Rudnick, I. Cerovecki, S. Chen, M.C. Schönau, J.L. McClean, and G. Gopalakrishnan. 2015. The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography 28(4):24–33, https://doi.org/​10.5670/​oceanog.2015.78.

Qiu, B., S. Chen, B.S. Powell, P.L. Colin, D.L. Rudnick, and M.C. Schönau. 2019. Nonlinear short-term upper ocean circulation variability in the tropical western Pacific. Oceanography 32(4):22–31, https://doi.org/​10.5670/oceanog.2019.408.

Rudnick, D.L., and J.R. Luyten. 1996. Intensive surveys of the Azores Front: Part 1. Tracers and dynamics. Journal of Geophysical Research 101(C1):923–939, https://doi.org/10.1029/95JC02867.

Rudnick, D.L., and J. Klinke. 2007. The underway conductivity-​temperature-depth instrument. Journal of Atmospheric and Oceanic Technology 24:1,910–1,923, https://doi.org/10.1175/JTECH2100.1.

Rudnick, D.L., K.L. Zeiden, C.Y. Ou, T.M.S. Johnston, J.A. MacKinnon, M.H. Alford, and G. Voet. 2019. Understanding vorticity caused by flow passing an island. Oceanography 32(4):66–73, https://doi.org/​10.5670/oceanog.2019.412.

Sadovy de Mitcheson, Y., and P.L. Colin, eds. 2012. Reef Fish Spawning Aggregations: Biology, Research and Management. Fish and Fisheries, vol. 35, Springer Netherlands, https://doi.org/​10.1007/978-94-007-1980-4.

Schönau, M.C., and D.L. Rudnick. 2015. Glider observations of the North Equatorial Current in the western tropical Pacific. Journal of Geophysical Research 120:3,586–3,605, https://doi.org/​10.1002/2014JC010595.

Schönau, M.C., H.W. Wijesekera, W.J. Teague, P.L. Colin, G. Gopalakrishnan, D.L. Rudnick, B.D. Cornuelle, Z.R. Hallock, and D.W. Wang. 2019. The end of an El Niño: A view from Palau. Oceanography 32(4):32–45, https://doi.org/​10.5670/oceanog.2019.409.

Schramek, T.A., P.L. Colin, M.A. Merrifield, and E.J. Terrill. 2018. Depth-dependent thermal stress around corals in the tropical Pacific Ocean. Geophysical Research Letters 45:9,739–9,747, https://doi.org/10.1029/2018GL078782.

Schramek, T.A., B.D. Cornuelle, G. Gopalakrishnan, P.L. Colin, S.J. Rowley, M.A. Merrifield, and E.J. Terrill. 2019. Tropical western Pacific thermal structure and its relationship to ocean surface variables: A numerical state estimate and forereef temperature records. Oceanography 32(4):156–163, https://doi.org/10.5670/oceanog.2019.421.

Siegelman, M., M.A. Merrifield, E. Firing, J.A. MacKinnon, M.H. Alford, G. Voet, H.W. Wijesekera, T.A. Schramek, K.L. Zeiden, and E.J. Terrill. 2019. Observations of near-inertial surface currents at Palau. Oceanography 32(4):74–83, https://doi.org/​10.5670/oceanog.2019.413.

Signell, R.P., and W.R. Geyer. 1991. Transient eddy formation around headlands. Journal of Geophysical Research 96(C2):2,561–2,575, https://doi.org/​10.1029/90JC02029.

Simmons, H.L., B.S. Powell, S.T. Merrifield, S.E. Zedler, and P.L. Colin. 2019. Dynamical downscaling of equatorial flow response to Palau. Oceanography 32(4):84–91, https://doi.org/​10.5670/oceanog.2019.414.

Trossman, D.S., B.K. Arbic, J.G. Richman, S.T. Garner, S.R. Jayne, and A.J. Wallcraft. 2016. Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modelling 97:109–128, https://doi.org/10.1016/j.ocemod.2015.10.013.

Ueckermann, M.P., and P.F.J. Lermusiaux. 2012. 2.29 Finite Volume MATLAB Framework Documentation. MSEAS Report 14, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

Ueckermann, M.P., and P.F.J. Lermusiaux. 2016. Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. Journal of Computational Physics 306:390–421, https://doi.org/10.1016/​j.jcp.2015.11.028.

Warner, S.J., and P. MacCready. 2009. Dissecting the pressure field in tidal flow past a headland: When is form drag “real”? Journal of Physical Oceanography 39:2,971–2,984, https://doi.org/​10.1175/2009JPO4173.1.

Wijesekera, H.W., E. Jarosz, W.J. Teague, D.W. Wang, D.B. Fribance, J.N. Moum, and S.J. Warner. 2014. Measurements of form and frictional drags over a rough topographic bank. Journal of Physical Oceanography 44:2,409–2,432, https://doi.org/​10.1175/JPO-D-13-0230.1.

Wolanski, E., J. Imberger, and M. Heron. 1984. Island wakes in shallow coastal waters. Journal of Geophysical Research 89(C6):10,553–10,569, https://doi.org/10.1029/JC089iC06p10553.

Zedler, S.E., B.S. Powell, B. Qiu, and D.L. Rudnick. 2019. Energy transfer in the western tropical Pacific. Oceanography 32(4):136–145, https://doi.org/​10.5670/oceanog.2019.419.

Zeiden, K.L., D.L. Rudnick, and J.A. MacKinnon. 2019. Glider observations of a mesoscale oceanic island wake. Journal of Physical Oceanography 49(9):2,217–2,235, https://doi.org/10.1175/JPO-D-18-0233.1.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.