Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.

Citation

Troxler, T.G., E. Gaiser, J. Barr, J.D. Fuentes, R. Jaffé, D.L. Childers, L. Collado-Vides, V.H. Rivera-Monroy, E. Castañeda-Moya, W. Anderson, R. Chambers, M. Chen, C. Coronado-Molina, S.E. Davis, V. Engel, C. Fitz, J. Fourqurean, T. Frankovich, J. Kominoski, C. Madden, S.L. Malone, S.F. Oberbauer, P. Olivas, J. Richards, C. Saunders, J. Schedlbauer, L.J. Scinto, F. Sklar, T. Smith, J.M. Smoak, G. Starr, R.R. Twilley, and K.R.T. Whelan. 2013. Integrated carbon budget models for the Everglades terrestrial-coastal-oceanic gradient: Current status and needs for inter-site comparisons. Oceanography 26(3):98–107, https://doi.org/10.5670/oceanog.2013.51.

References

Alongi, D.L., N.A. de Carvalho, A.L. Amaral, A. Da Costa, L. Trott, and F. Tierndi. 2012. Uncoupled surface and below-ground soil respiration in mangroves: Implications for estimates of dissolved inorganic carbon export. Biogeochemistry 109:151–162, https://doi.org/10.1007/s10533-011-9616-9.

Barr, J.G., V.C. Engel, J.D. Fuentes, J.C. Zieman, T.L. O’Halloran, T.J. Smith III, and G.H. Anderson. 2010. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research 115, G02020, https://doi.org/10.1029/2009JG001186.

Barr, J.G., V. Engel, T.J. Smith, and J.D. Fuentes. 2012. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agricultural and Forest Meteorology 153:54–66, https://doi.org/​10.1016/j.agrformet.2011.07.022.

Birch, J.B., and J.L. Cooley. 1982. Production and standing crop patterns of giant cutgrass (Zizaniopsis miliacea) in a freshwater tidal marsh. Oecologia 52:230–235, https://doi.org/​10.1007/BF00363842.

Bouillon, S., A. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N.C. Duke, E. Kristensen, S.Y. Lee, C. Marchand, J.J. Middelburg, and others. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles 22, GB2013, https://doi.org/10.1029/2007GB003052.

Bouillon, S. 2011. Carbon cycle: Storage beneath mangroves. Nature Geoscience 4:282–283, https://doi.org/10.1038/ngeo1130.

Breithaupt, J.L., J.M. Smoak, T.J. Smith, C.J. Sanders, and A. Hoare. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles 26, GB3011, https://doi.org/10.1029/2012GB004375

Castañeda-Moya, E., R.R. Twilley, V.H. Rivera-Monroy, B. Marx, C. Coronado-Molina, and S.E. Ewe. 2011. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14:1,178–1,195, https://doi.org/​10.1007/s10021-011-9473-3.

Castañeda-Moya, E., R.R. Twilley, and V.H. Rivera-Monroy. In Press. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management

Cawley, K., Y. Yamashita, N. Maie, and R. Jaffé. In press. Using optical properties to quantify fringe mangrove inputs to the dissolved organic matter (DOM) pool in a subtropical estuary. Estuaries and Coasts.

Chambers, L.G. 2012. Biogeochemical effects of simulated sea level rise on coastal wetland soil carbon. PhD dissertation, University of Florida, Gainesville.

Chapin, F.S., G.M. Woodwell, J.T. Randerson, E.B. Rastetter, G.M. Lovett, D.D. Baldocchi, D.A. Clark, M.E. Harmon, D.S. Schimel, R. Valentini, and others. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1,041–1,050, https://doi.org/​10.1007/s10021-005-0105-7.

Chen, M., N. Maie, K. Parish, and R. Jaffé. 2013. Spatial and temporal variability of dissolved organic matter in an oligotrophic subtropical coastal wetland. Biogeochemistry, https://doi.org/10.1007/s10533-013-9826-4

Chen, M., R.M. Price, Y. Yamashita, and R. Jaffé. 2010. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry 25:872–880, https://doi.org/​10.1016/j.apgeochem.2010.03.005.

Chen, R., and R.R. Twilley. 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22:955–970, https://doi.org/​10.2307/1353075.

Childers, D.L., D. Iwaniec, D. Rondeau, G.A. Rubio, E. Verdon, and C.J. Madden. 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in southern Everglades marshes. Hydrobiologia 569:273–292, https://doi.org/10.1007/s10750-006-0137-9

Davis, S.E., D.L. Childers, and G.B. Noe. 2006. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569:87–97, https://doi.org/10.1007/s10750-006-0124-1.

DeLaune, R.D., and J.R. White. 2012. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level? A case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change 110:297–314, https://doi.org/10.1007/s10584-011-0089-6.

Donar, C., K. Condon, M. Gantar, and E. Gaiser. 2004. A new technique for examining the physical structure of Everglades floating periphyton mat. Nova Hedwigia 78:107–119, https://doi.org/10.1127/0029-5035/2004/0078-0107.

Donato, D.C., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4:293–297, https://doi.org/​10.1038/ngeo1123.

Engel, V., J.G. Barr, J.D. Fuentes, V. Rivera-Monroy, E. Castañeda-Moya, T. Troxler, D.T. Ho, S. Ferron-Smith, J. Smoak, T.J. Smith III, and R.R. Twilley. 2011. Paper presented at Ameriflux/NACP meeting, New Orleans, LA, 2011.

Ewe, S.M.L., E.E. Gaiser, D.L. Childers, V.H. Rivera-Monroy, D.L. Iwaniec, J. Fourqurean, and R.R. Twilley. 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) in the Florida Coastal Everglades LTER (2001–2004). Hydrobiologia 569:459–474, https://doi.org/​10.1007/s10750-006-0149-5.

Fitz, H.C., and F.H. Sklar. 1999. Ecosystem analysis of phosphorus impacts and altered hydrology in the Everglades: A landscape modeling approach. Pp. 585–620 in Phosphorus Biogeochemistry in Subtropical Ecosystems. K.R. Reddy, G.A. O’Connor, and C.L. Schelske, eds, Lewis Publishers, Boca Raton, FL.

Fourqurean, J.W., G.A. Kendrick, L.S. Collins, and M.A. Vanderklift. 2012a. Carbon and nutrient storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63:967–983, https://doi.org/10.1071/MF12101.

Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano. 2012b. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5:505–509, https://doi.org/10.1038/NGEO1477.

Gaiser, E.E. 2009. Periphyton as an indicator of restoration in the Everglades. Ecological Indicators 9(6):S37–S45, https://doi.org/​10.1016/j.ecolind.2008.08.004

Gaiser, E.E., P. McCormick, and S.E. Hagerthey. 2011. Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41(S1):92–120, https://doi.org/​10.1080/10643389.2010.531192

Gaiser, E., J. Trexler, and P. Wetzel. 2012. The Everglades. Pp. 231–252 in Wetland Habitats of North America: Ecology and Conservation Concerns. D. Batzer and A. Baldwin, eds, University of California Press, Berkeley.

Hagerthey, S.E., B.J. Bellinger, K. Wheeler, M. Gantar, and E. Gaiser. 2011. Everglades periphyton: A biogeochemical perspective. Critical Reviews in Environmental Science and Technology 41(S1):309–343, https://doi.org/​10.1080/10643389.2010.531218.

Herbert, D.A., and J.W. Fourqurean. 2009. Phosphorus availability and salinity control productivity and demography of the seagrass Thalassia testudinum in Florida Bay. Estuaries and Coasts 32:188–201, https://doi.org/​10.1007/s12237-008-9116-x.

Hernandez, M.E., R. Mead, M.C. Peralba, and R. Jaffé. 2001. Origin and transport of n-alkane-2-ones in a sub-tropical estuary: Potential biomarkers for seagrass-derived organic matter. Organic Geochemistry 32:21–32, https://doi.org/10.1016/S0146-6380(00)00157-1.

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.

Iwaniec, D., D.L. Childers, D. Rondeau, C.J. Madden, and C.J. Saunders. 2006. Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. Hydrobiologia 569(1):223–235, https://doi.org/10.1007/s10750-006-0134-z

Jaffé, R., M.E. Hernandez, R. Mead, M.C. Peralba, and O.A. DiGuida. 2001. Origin and transport of sedimentary organic matter in two sub-tropical estuaries: A comparative, biomarker-based study. Organic Geochemistry 32:507–526, https://doi.org/10.1016/S0146-6380(00)00192-3.

Jaffé, R., J.N. Boyer, X. Lu, N. Maie, C. Yang, N. Scully, and S. Mock. 2004. Source characterization of dissolved organic matter in a mangrove-dominated estuary by fluorescence analysis. Marine Chemistry 84:195–210, https://doi.org/10.1016/j.marchem.2003.08.001.

Jimenez, K.L., G. Starr, C.L. Staudhammer, J.L. Schedlbauer, H.W. Loescher, S.L. Malone, and S.F. Oberbauer. 2012. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research 117, G04009, https://doi.org/10.1029/2012JG002117.

Juszli, G.M. 2006. Patterns in belowground primary productivity and belowground biomass in marshes of the Everglades’ oligohaline ecotone. Master’s thesis, Florida International University, Miami.

Krauss, K.W., T.W. Doyle, R.R. Twilley, T.J. Smith III, K.R.T. Whelan, and J.K. Sullivan. 2005. Woody debris in mangrove forests of south Florida. Biotropica 37:9–15, https://doi.org/10.1111/j.1744-7429.2005.03058.x.

Lovett, G., J. Cole, and M. Pace. 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:152–155, https://doi.org/10.1007/s10021-005-0036-3.

Lu, X.Q., N. Maie, J.V. Hanna, D. Childers, and R. Jaffé. 2003. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Research 37:2,599–2,606, https://doi.org/​10.1016/S0043-1354(03)00081-2.

Maie, N., R. Jaffé, T. Miyoshi, and D.L. Childers. 2006. Quantitative and qualitative aspects of dissolved organic carbon leached from plants in an oligotrophic wetland. Biogeochemistry 78:285–314, https://doi.org/10.1007/s10533-005-4329-6.

Malone, S., G. Starr, C.L. Staudhammer, and M.G. Ryan. 2013. Effects of simulated drought on the greenhouse carbon balance of Everglades short-hydroperiod marsh ecosystems. Global Change Biology 19:2,511–2,523, https://doi.org/10.1111/gcb.12211.

McCormick, P.V., M.J. Chimney, and D.R. Swift. 1997. Diel oxygen profiles and water column community metabolism in the Florida Everglades, USA. Archiv fur Hydrobiologia 40:117–129.

McCormick, P.V., and J.A. Laing. 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11:199–216, https://doi.org/​10.1023/A:1024259912402.

Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9:552–560, https://doi.org/​10.1890/110004.

Mead, R.N. 2003. Organic matter dynamics in the Florida coastal Everglades: A molecular marker and isotopic approach. PhD dissertation, Florida International University.

Myers, R., and J. Ewell, eds. 1990. Ecosystems of Florida. University of Central Florida Press, Orlando.

Neto, R., R.N. Mead, W. Louda, and R. Jaffé. 2006. Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetland. Biogeochemistry 77:283–304, https://doi.org/​10.1007/s10533-005-5042-1.

Orem, W.H., C.W. Holmes, C. Kendall, H.E. Lerch, A.L. Bates, S.R. Silva, A. Boylan, M. Corum, M. Marot, and C. Hedgeman. 1999. Geochemistry of Florida Bay sediments: Nutrient history at five sites in eastern and central Florida Bay. Journal of Coastal Research 15:1,055–1,071.

Pisani, O., W. Louda, and R. Jaffé. In press. Biomarker assessment of spatial and temporal changes in the composition of flocculent material (floc) in the subtropical wetland of the Florida Coastal Everglades. Environmental Chemistry.

Rivera-Monroy, V.H., E. Castaneda-Moya, J.G. Barr, V. Engel, J.D. Fuentes, T.G. Troxler, R. Twilley, S. Bouillon, T.J. Smith, and T.L. O’Halloran. In press. Current methods to evaluate net primary production and carbon budgets in mangrove forests. In Methods in Biogeochemistry of Wetlands. R.D. Delaune, K.R. Reddy, P. Megonigal, and C. Richardson, eds, Soil Science Society of America Book Series. 

Rivera-Monroy, V.H., R.R. Twilley, S.E. Davis, D.L. Childers, M. Simard, R. Chambers, R. Jaffé, J.N. Boyer, D.T. Rudnick, K. Zhang, and others. 2011. The role of the Everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Critical Reviews in Environmental Science and Technology 41:633–669, https://doi.org/10.1080/10643389.2010.530907.

Robertson, A.I. and P.A. Daniel. 1989. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–198, https://doi.org/​10.1007/BF00377155.

Romigh, M.M., S.E. Davis, V.H. Rivera-Monroy, and R.R. Twilley. 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569:505–516, https://doi.org/10.1007/s10750-006-0152-x.

Saunders, C.J., D.L. Childers, W.T. Anderson, J. Lynch, and R. Jaffe. 2007. Understanding Cladium jamaicense dynamics over the last century in ENP using simulation modeling and paleoecological data: 24 month Report. Everglades National Park, National Park Service (#EVER-00278).

Schedlbauer, J., S. Oberbauer, G. Starr, and K.L. Jimenez. 2010. Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150:994–1,006, https://doi.org/​10.1016/j.agrformet.2010.03.005.

Schedlbauer, J., J. Munyon, S. Oberbauer, E. Gaiser, and G. Starr. 2012. Controls on ecosystem carbon dioxide exchange in short- and long-hydroperiod Florida Everglades freshwater marshes. Wetlands 32:801–812, https://doi.org/10.1007/s13157-012-0311-y.

Schubauer, J.P., and C.S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography 29:1,052–1,065.

Scully, N.M., N. Maie, S. Dailey, J. Boyer, R.D. Jones, and R. Jaffé. 2004. Photochemical and microbial transformation of plant derived dissolved organic matter in the Florida Everglades. Limnology and Oceanography 49(5):1,667–1,678.

Smoak, J.M., J.L. Breithaupt, T.J. Smith, and C.J. Sanders. 2013. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 104:58–66, https://doi.org/10.1016/j.catena.2012.10.009

Symbula, M., and F.P. Day. 1988. Evaluations of two methods for estimating belowground production in a freshwater swamp forest. American Midland Naturalist 120:405–415.

Thomas, S., E.E. Gaiser, M. Gantar, and L.J. Scinto. 2006. Quantifying the responses of calcareous periphyton crusts to rehydration: A microcosm study (Florida Everglades). Aquatic Botany 84:317–323, https://doi.org/10.1016/​j.aquabot.2005.12.003.

Troxler, T.G., and J.H. Richards. 2009. δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, USA. Aquatic Botany 91:157–165, https://doi.org/​10.1016/j.aquabot.2009.04.003.

Troxler, T.G., D.L. Childers, and C.J. Madden. 2013. Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands, https://doi.org/​10.1007/s13157-013-0446-5.

Twilley, R.R. 1985. The exchange of organic carbon in basin mangrove forests in a Southwest Florida estuary. Estuarine, Coastal and Shelf Science 20:543–557, https://doi.org/​10.1016/0272-7714(85)90106-4.

Twilley, R.R., R.H. Chen, and T. Hargis. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical ecosystems. Water, Air, and Soil Pollution 64:265–288, https://doi.org/10.1007/BF00477106.

Xu, Y., C. Holmes, and R. Jaffé. 2007. Paleo-environmental assessment of recent environmental changes in Florida Bay, USA: A biomarker based study. Estuarine, Coastal and Shelf Science 73:201–210, https://doi.org/10.1016/​j.ecss.2007.01.002.

Xu, Y., and R. Jaffé. 2007. Lipid biomarkers in suspended particulates from a subtropical estuary: Assessment of seasonal changes in sources and transport of organic matter. Marine Environmental Research 64:666–678, https://doi.org/10.1016/j.marenvres.2007.07.004.

Xu, Y., R.N. Mead, and R. Jaffé. 2006. A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay. Hydrobiologia 569:179–192, https://doi.org/10.1007/s10750-006-0131-2.

Valiela, I., J.M. Teal, and N. Persson. 1976. Production dynamics of experimentally enriched salt marsh vegetation: Belowground biomass. Limnology and Oceanography 21:245–252.

Vymazal, J., and C.J. Richardson. 1995. Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. Journal of Phycology 31:343–354, https://doi.org/​10.1111/j.0022-3646.1995.00343.x.

Yamashita, Y., L. Scinto, N. Maie, and R. Jaffé. 2010. Dissolved organic matter characteristics across a subtropical wetland’s landscape: Application of optical properties in the assessment of environmental dynamics. Ecosystems 13:1,006–1,019, https://doi.org/​10.1007/s10021-010-9370-1.

Zieman, J.C., J.W. Fourqurean, and R.L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44:292–311.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.