RADAR OBSERVATIONS OF OCEAN SURFACE FEATURES RESULTING FROM UNDERWATER TOPOGRAPHY CHANGES

By Lisa Nyman, Björn Lund, Hans C. Graber, Roland Romeiser, and Jochen Horstmann

A synthetic aperture radar image of Palau and the surrounding waters acquired on May 28, 2016, at 08:47:10 UTC by the satellite TerraSAR-X.
INTRODUCTION

Knowledge of abrupt underwater topography changes, as well as their effects on near-surface currents, is critical for navigational safety near regions of strong bathymetry gradients, such as around the islands of the Republic of Palau. There, mean underwater inclines can be as much as 25% of the horizontal distance, leading to a depth change of up to 85% within 26 km. Many processes associated with oceanic flows produce surface manifestations that are readily imaged from afar by synthetic aperture radar (SAR) or ship-based X-band Doppler marine radar (DMR). SAR and DMR imagery complement each other, with SAR providing a large-scale snapshot of the region on the order of 50 km or more and the DMR offering a mobile smaller-scale look at a particular area on the order of about 6 km with the ability to measure near-surface currents (1–5 m depth) in the vicinity of the ship. In this paper, we discuss the results from an analysis of thousands of DMR images around the islands of Palau. Three types of ocean surface features were identified: internal waves, surface slicks, and convergent fronts. Internal waves and convergent fronts are directly influenced by abrupt topography, and surface slicks can aid in the surface feature imaging process if their shapes are modulated by spatially varying surface currents. These ocean surface features are examined with respect to their associations with changes in the seafloor thousands of meters beneath them.

ABSTRACT. The near-surface response to underwater topography changes is of great importance for navigational safety near regions of strong bathymetry gradients, such as around the islands of the Republic of Palau. There, mean underwater inclines can be as much as 25% of the horizontal distance, leading to a depth change of up to 85% within 26 km. Many processes associated with oceanic flows produce surface manifestations that are readily imaged from afar by synthetic aperture radar (SAR) or ship-based X-band Doppler marine radar (DMR). SAR and DMR imagery complement each other, with SAR providing a large-scale snapshot of the region on the order of 50 km or more and the DMR offering a mobile smaller-scale look at a particular area on the order of about 6 km with the ability to measure near-surface currents (1–5 m depth) in the vicinity of the ship. In this paper, we discuss the results from an analysis of thousands of DMR images around the islands of Palau. Three types of ocean surface features were identified: internal waves, surface slicks, and convergent fronts. Internal waves and convergent fronts are directly influenced by abrupt topography, and surface slicks can aid in the surface feature imaging process if their shapes are modulated by spatially varying surface currents. These ocean surface features are examined with respect to their associations with changes in the seafloor thousands of meters beneath them.

IN PLAIN WORDS. Radar imagery can provide a valuable overview of spatial characteristics of upper ocean dynamic features such as internal waves, surface slicks, and converging current fronts. Using imagery from a shipboard rotating antenna radar as well as satellite radar, we identify internal waves and their formation points as well as convergent fronts associated with abrupt bathymetry changes around Palau.

During a research cruise around the northern islands of the Republic of Palau from May 18 to May 28, 2016, on R/V Roger Revelle, the University of Miami marine radar group installed an X-band, coherent, vertically polarized Doppler marine radar (DMR) provided by Helmholtz-Zentrum Geesthacht (Figure 1a). The DMR completes one rotation every two seconds and has a range resolution of 7.5 m and an imaging radius of 3.2 km (Carrasco et al., 2017). Figure 1b shows an example DMR backscatter intensity image. The purpose of the installation was to acquire radar images for pairing with radar-derived near-surface current measurements and data from the ship-mounted multibeam echosounder. The DMR has the capability to measure near-surface currents (1–5 m depth) in the immediate area around the ship in order to determine changes in the current as the ship navigates over steep underwater topography gradients (Young et al., 1985; Senet et al., 2001; Lund et al., 2015a,b, 2018).

There are two ways to measure near-surface currents with the DMR. One is the classical dispersion shell method, which requires taking a three-dimensional Fast Fourier Transform (3DFFT) of a ship's crew to identify surface currents along the ship track before they encounter a potentially dangerous region. In the region around Palau, remote-sensing instruments are an excellent choice for identifying surface features and flow changes from afar.

Analysis of ship-based X-band Doppler marine radar and synthetic aperture radar images ultimately enhances vessel safety in these dynamic regions.
ties from multiple look directions as the ship moves in order to determine the full Doppler velocity vector for a given region. A multiple regression analysis is carried out to empirically correct the Doppler velocity for wave contributions in order to measure a near-surface current. This analysis was trained with approximately 18,000 near-surface current measurements and compared with the shipboard acoustic Doppler current profiler (ADCP) measurements taken at 13 m depth with good results. These results can be represented in a two-dimensional, temporally averaged vector field around the ship. Alternatively, a mean for each image can be determined that will form a near-surface current transect along the ship track. Table 1 provides details of the

| TABLE 1. Sampling depth, grid type, range radius, and temporal resolution for the radar-derived near-surface current measurement methods, 3DFFT and DoVeS, used in this paper. |
|---------------------------------------------------------------|---------------------------------|---------------------------------|-------------------|
| **3DFFT** Current Field                                     | **DoVeS** Current Field         | **DoVeS Transect**              |
| Sampling Depth                                              | 1–5 m                          | 6–13 m                         | 6–13 m            |
| Grid Type                                                   | 500 m diameter circles (overlapping) | 326 m x 326 m boxes (not overlapping) | 135 m diameter circles (overlapping) |
| Range Radius (distance from ship)                           | 3.2 km                         | 3.2 km                         | 135 m             |
| Temporal Resolution (time from ship)                        | 10 minutes                     | 20 minutes                     | 75 seconds        |

DMR is a coherent-on-receive radar, which means that it has the capability to measure both radar intensity and phase information. The phase information is comprehensively processed to produce Doppler velocity, which is the result of a multitude of physical processes (Braun et al., 2008; Carrasco et al., 2017). DoVeS works by synthesizing Doppler velocities from multiple look directions as the ship moves in order to determine the full Doppler velocity vector for a given region. A multiple regression analysis is carried out to empirically correct the Doppler velocity for wave contributions in order to measure a near-surface current. This analysis was trained with approximately 18,000 near-surface current measurements and compared with the shipboard acoustic Doppler current profiler (ADCP) measurements taken at 13 m depth with good results. These results can be represented in a two-dimensional, temporally averaged vector field around the ship. Alternatively, a mean for each image can be determined that will form a near-surface current transect along the ship track. Table 1 provides details of the

FIGURE 1. (a) The Doppler marine radar (DMR) is shown mounted on R/V Roger Revelle approximately 18 m above sea level. (b) An example of a DMR image. A partially exposed reef on the northwestern edge of the archipelago is visible at the bottom of the DMR backscatter intensity image. Exposed reefs are highly visible in DMR imagery because wave breaking increases ocean surface roughness near the exposed regions. Certain areas are masked due to physical barriers on the ship such as the mast and the smokestack.
sampling depth, grid type, range radius, and temporal resolution for the 3DFFT technique, as well as the two modes of the DoVeS technique.

During the same time period of the cruise, 34 high-resolution synthetic aperture radar (SAR) images were collected from the COSMO-SkyMed, RadarSat2, and TerraSAR-X satellites. Satellite SAR imagery provides a large-scale (50 km or more) look at the region of interest at the specific time of the satellite overpass, while the ship-mounted DMR can be taken to a region to acquire smaller-scale (6.4 km in diameter) imagery around the ship. Both SAR and DMR methods use microwave backscattering to image ocean surface roughness. To first order, the backscattered power is proportional to the intensities of the small wind-induced waves (known as Bragg waves), which have a wavelength of approximately half of the radar wavelength for radars operating at grazing incidence (Wright, 1968; Valenzuela, 1978). Therefore, in low energy wave conditions, there is reduced backscatter and thus a dark signal. In high energy wave conditions, there is increased backscatter, thus a bright signal.

In this paper, we focus primarily on radar intensity images and the signatures of marine features located near underwater topography changes measured from the shipboard multibeam echosounder around the islands of Palau. We analyze the location and orientation of these features with respect to the surrounding underwater topography and surface currents.

**BATHYMETRY DETECTION WITH RADAR**

It has been known since the 1980s that shallow water bathymetry can become visible in radar imagery via the modulation of surface currents. Where the water depth is shallower, the flow region is compressed, causing an amplification of the current. In deeper water, the flow region is expanded, leading to the reduction of current velocity. The region in between a faster current and a slower current (in current direction) is a convergent zone, which "squeezes" the Bragg waves to form a rough ocean surface and therefore a bright radar return is seen in these regions. In between a slower current and a faster current (in current direction), a divergent zone "stretches" the Bragg waves and results in a smoother surface and a dark radar return. Therefore, there is a dark radar return in areas of shoaling bathymetry and a bright radar return in areas of deepening bathymetry (Alpers and Hennings, 1984). Figure 2 illustrates these imaging signatures.

Figure 3 shows a SAR image containing signatures of the submerged and exposed barrier reefs off the northern coast of Babeldaob island, the largest island in the Republic of Palau. The wind conditions necessary for underwater bathymetry to be visible are that the wind speed must be above the threshold for Bragg wave generation (2–3 m s\(^{-1}\)) but below the wind speed where the wind-induced surface roughness would overpower the modulation from the bathymetry (typically 8–10 m s\(^{-1}\)). Additionally, there must be a strong current, which can be wind driven but is usually tidal, that is not running parallel to the bathymetric feature itself.

This relatively simple relationship between bathymetry and radar signatures is only expected in shallow water (typically 30 m or less), so it is not possible to determine bathymetry changes in this way at water depths greater than 30 m, where the relationship between depth and surface current is more complicated. However, in certain situations,
the DMR can image features that are directly correlated with large topography changes in deep water. During the 10-day *Revelle* cruise in May 2016, the polar DMR backscatter intensity data were converted to Cartesian coordinates and averaged to images every 75 seconds, creating over 10,000 DMR average intensity images. By individually scrutinizing this large number of images, radar images with pronounced signals of oceanic features of interest were separated into three categories: internal waves, slicks, and fronts. Figure 4 shows examples of each of these signatures. Of the 10,058 images, nine contained evidence of internal waves or internal wave packets, 67 contained slicks, 12 contained convergent fronts, and 9,968 showed no notable features. In some of these images, there is more than one instance of a single type of feature or two different types of features. In subsequent images, the same feature is seen at different times as the ship travels. Six different internal waves or internal wave packets were identified, 602 separate slicks, and six convergent fronts.

**INTERNAL WAVES**

Internal waves occur at the pycnocline interface of a stratified water column. They are seen in radar imagery as juxtaposed bright and dark linear or arc-shaped strips on a gray background. Internal wave signatures appear linear-shaped in DMR images (which have an imaging diameter of 6.4 km) and arc-shaped in SAR imagery (which can cover a much larger area of 50–100 km). The orbital motions within an internal wave modulate the surface current such that there is a converging current on the leading edge of the wave and a surface current divergence on the trailing edge of the wave. Thus, due to wave-current interaction, there is a bright radar return on the leading edge of an internal wave and a dark return on the trailing edge (Alpers, 1985). Figure 5 shows the alternating bright-dark radar signature pattern and the associated internal wave shape. While both internal wave signatures and signatures of changing bathymetry described in the previous section display an alternating bright-dark pattern in radar imagery, they are easily differentiated. Internal wave signatures are visible on a smaller scale with a distinct regular periodicity, with approximately 20–50 m between neighboring waves within an internal wave packet. Changing bathymetry signatures are irregularly shaped according to the local bathymetry and are visible in SAR imagery over a much larger length scale of tens of kilometers.

Internal waves commonly form as a result of stratified flow encountering a sudden underwater topography change. In a simple stratified two-layer model, shown in Figure 6, internal waves are

![Internal Waves](image-url)
often formed by tidal flow depositing the upper layer of water in an indent into the lower layer that follows the shape of the bathymetric feature. During slack tide, this perturbation relaxes, creating a distinct depression in the water column. When the tide reverses, this depression propagates in the direction of the flow (Lamb, 1994). This perturbation often creates a train of internal depression waves that propagate together in a packet.

Four single internal waves and two internal wave packets were identified in DMR mean backscatter intensity images. The propagation direction was determined by their orientation. We ray traced the internal waves along a great-circle arc (the shortest possible connecting line between two points along the surface of a spherical Earth) in both directions perpendicular to the internal wave orientation. Tracing the great-circle arc 100 km in either direction and plotting it against a bathymetric map of the region, we followed the arc until it crossed a likely formation point. The most probable internal wave generation point was systematically determined by identifying the area where there is a sharp drop in bathymetry along each internal wave’s great-circle arc that is not blocked by land.

From this analysis, internal wave generation points are determined (Figure 7). Internal waves B and F have likely formation points on the northern tip of Velasco Reef, a sunken coral atoll north of the inhabited Palauan islands. Velasco sits at a depth of only 15 m, (Colin, 2009) and the current is therefore directed around the reef. The fact that the great-circle arcs of internal waves B and F intersect indicates that they may be different stages of the same tidal formation. This could indicate that the internal wave forms off the northern tip of the reef and initially propagates west, but it refracts around the curvature of the atoll and then propagates in a southwest direction.

Internal wave A likely has a nearby formation point, where the northern part of Velasco meets the southern end of the Kyushu–Palau Ridge (Figure 8a). This ridge extends north 2,600 km to Japan and has been previously identified as an internal wave generation spot (Wolanski
et al., 2004). Internal waves E and D have formation points near the narrow waterways between the island of Kayangel and reefs north of Babeldaob (Figure 8b). The narrow opening between the reefs paired with an abrupt ridge is the perfect internal wave formation scenario. Internal wave C has a most likely formation point at the small seamount west of the main archipelago.

SLICKS
Marine features categorized as surface films (“sea slicks”) are ubiquitous in the area around Palau, where they typically have a continuous linear shape. Because they dampen the Bragg waves and thus appear as smooth water (Hühnerfuss and Alpers, 1983), sea slicks manifest as areas of low backscatter (dark returns) on the radar. These features can be biological films or man-made slicks such as oil spills (Hovland et al., 1994). In the tropical waters around Palau, biogenic films commonly result from life processes of local phytoplankton and zooplankton. In the presence of convergent ocean currents, slicks align within a convergent zone (da Silva et al., 1998). They are advected by the surface current, and their irregular shapes in radar images can act as tracers for physical processes (Gade et al., 2013).

Figure 9 depicts sea slicks in both DMR and SAR images of the area. The wide distribution of slicks throughout the region indicates that these dark features are not directly correlated with topography changes. However, the traces slicks leave on the ocean surface aid in the imaging of flow patterns that may distort the slick.

For example, in Figure 9b, the slick is altered by an internal wave packet that formed near the northern barrier reef off Babeldaob Island. This slick is most likely biogenic because it is so close to the productive coral reefs around the island. The presence of this slick aids in the imaging of the internal wave packet. The zigzag slick pattern in Figure 9b is seen only once out of 602 incidences of slicks we imaged during the cruise. The periodic alternating bright-dark signature in the image indicates the presence of an internal wave, which is packet E in Figure 7. The patterns produced from the slick’s distortion suggest that the alternating surface current within the internal wave packet is advecting the slick in an interchanging motion. The angle between the slick orientation and the internal wave propagation direction alters its shape. In regions of convergence, the slick is pulled to the northeast, whereas in divergent regions, the slick is pulled to the southwest, creating a discontinuity that allows the feature to be identified more clearly.

CONVERGENT FRONTS
During the 10-day cruise, continuous radar operation revealed only six high backscatter areas attributed to convergent fronts, all of which occurred over abrupt underwater topography changes. The radar signature of a convergent front is defined as a thin strip of uniformly rough water on either side of the topographic feature that is associated with a converging current shear. Wave-current interaction along the converging current shear interface produces the surface signature seen in radar (Lyzenga, 1991). A unique quality of the convergent fronts seen in the DMR images around Palau is that they are only visible in temporally averaged images. In single rotation images, convergent fronts are invisible, because wave motions eclipse the relatively weak bright radar signature. Because of this, these types of fronts are also not observed in the SAR images of the area, which display a snapshot of the area taken in less than a second. In the DMR mean intensity images, many waves will average out

**FIGURE 9.** (a) A subscene of a COSMO-SkyMed image acquired on June 14, 2016, at 08:42 UTC shows surface slicks near Palau. (b) Surface slicks advected by the internal wave motions can be identified in this temporally averaged DMR image acquired on May 27, 2016, from 08:11 to 08:20 UTC. The horizontal line in the middle is the ship wake.
over time to a uniform background, and the convergent fronts appear as bright lines that can be faint or bold, depending on the strength of the convergence. All of the identified front signatures on this cruise were distributed near abrupt changes in underwater topography.

Over the course of the cruise, six convergent front signatures were documented. All of them are visible in wind speeds between 3 m s$^{-1}$ and 8 m s$^{-1}$, and all are associated with abrupt underwater topography changes greater than 1,500 m over a relatively short horizontal distance. In Figure 10, a time series of the underwater topography beneath the ship track is compared to times of front signature sightings, represented by orange vertical lines. While a convergent front does not always occur when currents encounter abrupt underwater topography, convergent front signatures that do occur are consistently associated with sudden underwater topography changes.

On May 23, 2016, when the first convergent front signature of the cruise was observed, near-surface currents close to the ship were extracted from the data with the DoVeS algorithm. In Figure 11, a transect of the magnitude of DoVeS-derived near-surface currents close to the ship is overlaid on the underwater topography beneath the ship track 40 minutes before and after the front sighting. The near-surface current for this time period is directionally steady at about 261° from north. The ship is also traveling steadily in a similar direction 226° from north. The magnitude transect shows that the current decreases by about 20 cm s$^{-1}$ as the bathymetry drops approximately 2,000 m over an 18 km horizontal distance, creating sufficient convergence for the front interface to be visible.

A bright front signature is not always caused by increasing or decreasing upper ocean currents. Often, a near-surface directional current change creates a strong convergence along its interface. This is the case on May 27, 2016, 14:50 UTC, and May 27, 2016, 21:14 UTC, when the wind speed was greater than 3 m s$^{-1}$, and thus the sea state was high enough to obtain reliable two-dimensional dispersion shell cur-
underwater features that correspond to abrupt topography gradients in both shallow and deep water. Analysis of DMR and SAR images ultimately enhances vessel safety in these dynamic regions.

With the aid of these instruments, internal wave generation points can be determined using ray tracing. Two particular generation points were found in the region surrounding Palau: north of Velasco Reef as the flow is directed around the sunken atoll as well as over the southern tip of the Kyushu-Palau Ridge, and in the narrow passageways into open ocean between the islands of Kayangel and Babeldaob.

Collection of DMR images enabled identification of convergent fronts. Through advanced processing of multiple DMR rotations, this instrument can be used to measure near-surface currents by employing the dispersion shell method or the empirical DoVeS algorithm. These current measurements show that the surface features are indicative of near-surface current variations as a result of a large underwater topography change over a relatively small horizontal distance. Identification of these upper ocean features helps us to further understand flow changes over steep underwater topography. Sighting of a frontal feature on a ship-mounted DMR provides an alert that there are converging surface currents at the location of the signature and therefore there may be an abrupt underwater topography change nearby. The examples provided in this paper indicate that abrupt shallow and deepwater bathymetry changes manifest as recognizable surface signatures in radar imagery.

CONCLUSION
DMR, with its wide range, portability, and spatiotemporal capabilities, is an invaluable resource for imaging upper ocean dynamic features. When used in combination with the large-scale view provided by SAR images, it is possible to detect underwater features that correspond to abrupt topography gradients in both shallow and deep water. Analysis of DMR and SAR images ultimately enhances vessel safety in these dynamic regions.

With the aid of these instruments, internal wave generation points can be determined using ray tracing. Two particular generation points were found in the region surrounding Palau: north of Velasco Reef as the flow is directed around the sunken atoll as well as over the southern tip of the Kyushu-Palau Ridge, and in the narrow passageways into open ocean between the islands of Kayangel and Babeldaob.

Collection of DMR images enabled identification of convergent fronts. Through advanced processing of multiple DMR rotations, this instrument can be used to measure near-surface currents by employing the dispersion shell method or the empirical DoVeS algorithm. These current measurements show that the surface features are indicative of near-surface current variations as a result of a large underwater topography change over a relatively small horizontal distance.

Identification of these upper ocean features helps us to further understand flow changes over steep underwater topography. Sighting of a frontal feature on a ship-mounted DMR provides an alert that there are converging surface currents at the location of the signature and therefore there may be an abrupt underwater topography change nearby. The examples provided in this paper indicate that abrupt shallow and deepwater bathymetry changes manifest as recognizable surface signatures in radar imagery.

REFERENCES
Administration, National Environmental Satellite, Data, and Information Serve, Office of Research and Applications.


ACKNOWLEDGMENTS

COSMO-SkyMed® Product-ASI 2016 processed under license from ASI (Agenzia Spaziale Italiana), all rights reserved. COSMO-SkyMed images were distributed by e-GEOS. TerraSAR-X data were obtained through © DLR e.V. 2016. TerraSAR-X images were distributed by Airbus Defense and Space GmbH; downlinked and processed by CSTARS under Airbus Defense and Space license. Lisa Nyman was funded by the US Office of Naval Research (ONR) under grants N0014-14-1-0630 and N0016-16-1-3147. We thank Samantha Ballard for assisting in the DMRI installation on R/V Roger Revelle.

AUTHORS

Lisa Nyman (lnyman@rsmas.miami.edu) is PhD Candidate, Björn Lund is Associate Scientist, Hans C. Graber is Professor, and Roland Romeiser is Professor, all at the University of Miami Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA. Jochen Horstmann is Head, Department of Radar Hydrography, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.

ARTICLE CITATION


COPYRIGHT & USAGE

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content.