Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 03

View Issue TOC
Volume 26, No. 3
Pages 210 - 219

OpenAccess

Ecological Transitions in a Coastal Upwelling Ecosystem

Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing.

Citation

Ohman, M.D., K. Barbeau, P.J.S. Franks, R. Goericke, M.R. Landry, and A.J. Miller. 2013. Ecological transitions in a coastal upwelling ecosystem. Oceanography 26(3):210–219, https://doi.org/10.5670/oceanog.2013.65.

References

Aksnes, D.L., and M.D. Ohman. 2009. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System. Limnology and Oceanography 54:1,272–1,281, https://doi.org/10.4319/lo.2009.54.4.1272.

Aksnes, D.L., M.D. Ohman, and P. Rivière. 2007. Optical effect on the nitracline in a coastal upwelling area. Limnology and Oceanography 52:1,179–1,187, https://doi.org/10.4319/lo.2007.52.3.1179.

Bestelmeyer, B.T., A.M. Ellison, W.R. Fraser, K.B. Gorman, S.J. Holbrooke, C.M. Laney, M.D. Ohman, D.P.C. Peters, F.C. Pillsbury, A. Rassweiler, and others. 2011. Analysis of abrupt transitions in ecological systems. Ecosphere 2:art129, https://doi.org/10.1890/ES11-00216.1.

Bograd, S.J., C.G. Castro, E. Di Lorenzo, D.M. Palacios, H. Bailey, W. Gilly, and F.P. Chavez. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophysical Research Letters 35, L12607, https://doi.org/​10.1029/2008GL034185.

Chekalyuk, A., M.R. Landry, R. Goericke, A.G. Taylor, and M.A. Hafez. 2012. Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem. Journal of Plankton Research 34:761–777, https://doi.org/10.1093/plankt/fbs034.

Chelton, D.B. 1982. Large-scale response of the California Current to forcing by the wind stress curl. CalCOFI Reports 23:130–148.

Chelton, D.B., M.G. Schlax, R.M. Samelson, and R.A. de Szoeke. 2007. Global observations of large oceanic eddies. Geophysical Research Letters 34, L15606, https://doi.org/​10.1029/2007gl030812.

Collier, J.L., and B. Palenik. 2003. Phycoerythrin-containing picoplankton in the Southern California Bight. Deep-Sea Research Part II 50:2,405–2,422, https://doi.org/​10.1016/S0967-0645(03)00127-9.

Combes, V., F. Chenillat, E. Di Lorenzo, P. Rivière, M.D. Ohman, and S.J. Bograd. 2013. Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Progress in Oceanography 109:78–89, https://doi.org/10.1016/j.pocean.2012.10.001.

Davis, R.E., M.D. Ohman, D.L. Rudnick, J.T. Sherman, and B. Hodges, 2008. Glider surveillance of physics and biology in the southern California Current System. Limnology and Oceanography 53:2,151–2,168, https://doi.org/10.4319/lo.2008.53.5_part_2.2151 

Décima, M. 2011. Mesozooplankton trophic variability in a changing ocean. PhD thesis, University of California, San Diego.

deYoung, B., M. Barrange, G. Beaugrand, R. Harris, R.I. Perry, M. Scheffer, and F. Werner. 2008. Regime shifts in marine ecosystems: Detection, prediction and management. Trends in Ecology and Evolution 23:402–409, https://doi.org/​10.1016/j.tree.2008.03.008.

Di Lorenzo, E., and M.D. Ohman. 2013. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proceedings of the National Academy of Sciences of the United States of America 110:2,496–2,499, https://doi.org/10.1073/pnas.1218022110.

Di Lorenzo, E., N. Schneider, K.M. Cobb, P.J.S. Franks, K. Chhak, A.J. Miller, J.C. McWilliams, S.J. Bograd, H. Arango, E. Curchitser, and others. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607, https://doi.org/​10.1029/2007GL032838.

Duarte, C.M., S. Agusti, J.M. Gasol, D. Vaque, and E. Vazquez-Dominguez. 2000. Effect of nutrient supply on the biomass structure of planktonic communities: An experimental test on a Mediterranean coastal community. Marine Ecology Progress Series 206:87–95, https://doi.org/10.3354/meps206087.

Field, D.B., T.R. Baumgartner, C.D. Charles, V. Ferreira-Bartrina, and M.D. Ohman. 2006. Planktonic foraminifera of the California Current reflect 20th-century warming. Science 311:63–66, https://doi.org/10.1126/science.1116220.

Franks, P.J.S., E. Di Lorenzo, N.L. Goebel, F. Chenillat, P. Rivière, C.A. Edwards, and A.J. Miller. 2013. Modeling physical-biological responses to climate change in the California Current System. Oceanography 26(3):26–33, https://doi.org/​10.5670/oceanog.2013.42.

Haury, L.R., E.L. Venrick, C.L. Fey, J.A. McGowan, and P.P. Niiler. 1993. The Ensenada Front: July 1985. California Cooperative Oceanic Fisheries Investigations Reports 34:69–88. Available online at: http://calcofi.org/publications/ccreports.html (accessed July 21, 2013).

Hopkinson, B.M., and K. Barbeau. 2008. Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnology and Oceanography 53:1,303–1,318, https://doi.org/10.4319/lo.2008.53.4.1303.

Hsieh, C.-H., and M.D. Ohman. 2006. Biological responses to environmental forcing: The Linear Tracking Window hypothesis. Ecology 87:1,932–1,938, https://doi.org/​10.1890/0012-9658(2006)87[1932:BRTEFT]​2.0.CO;2.

Kahru, M., R. Kudela, M. Manzano-Sarabia, and B.G. Mitchell. 2009. Trends in primary production in the California Current detected with satellite data. Journal of Geophysical Research 114, C02004, https://doi.org/​10.1029/2008jc004979.

Kahru, M., R.M. Kudela, M. Manzano-Sarabia, and B.G. Mitchell. 2012. Trends in the surface chlorophyll of the California Current: Merging data from multiple ocean color satellites. Deep Sea Research Part II 77–80:89–98, https://doi.org/​10.1016/j.dsr2.2012.04.007.

Kim, H.J., and A.J. Miller. 2007. Did the thermocline deepen in the California current after the 1976/77 climate regime shift? Journal of Physical Oceanography 37:1,733–1,739, https://doi.org/10.1175/JPO3058.1.

King, A.L., and K. Barbeau. 2007. Evidence for phytoplankton iron limitation in the southern California Current System. Marine Ecology Progress Series 342:91–104, https://doi.org/​10.3354/meps342091.

King, A.L., and K. Barbeau. 2011. Dissolved iron and macronutrient distributions in the southern California Current System. Journal of Geophysical Research 116, C03018, https://doi.org/10.1029/2010jc006324.

Landry, M.R. 1977. A review of important concepts in the trophic organization of pelagic ecosystems. Helgoländer wissenschaftliche Meeresuntersuchungen 30:8–17.

Landry, M.R., M.D. Ohman, R. Goericke, M.R. Stukel, K. Barbeau, R. Bundy, and M. Kahru. 2012. Pelagic community responses to a deep-water front in the California Current Ecosystem: Overview of the A-Front study. Journal of Plankton Research 34:739–748, https://doi.org/10.1093/plankt/fbs025.

Landry, M.R., M.D. Ohman, R. Goericke, M.R. Stukel, and K. Tsyrklevitch. 2009. Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California. Progress in Oceanography 83:208–216, https://doi.org/​10.1016/j.pocean.2009.07.026.

Lara-Lopez, A.L., P. Davison, and J.A. Koslow. 2012. Abundance and community composition of micronekton across a front off Southern California. Journal of Plankton Research 34:828–848, https://doi.org/10.1093/plankt/fbs016.

Lavaniegos, B.E., and M.D. Ohman. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Progress in Oceanography 75:42–69, https://doi.org/10.1016/j.pocean.2007.07.002.

Li, Q.P., P.J.S. Franks, M.D. Ohman, and M.R. Landry. 2012. Enhanced nitrate fluxes and biological processes at a frontal zone in the southern California Current Ecosystem. Journal of Plankton Research 34:790–801, https://doi.org/10.1093/plankt/fbs006.

Mackas, D.L., L. Washburn, and S.L. Smith. 1991. Zooplankton community pattern associated with a California Current cold filament. Journal of Geophysical Research 96(C8):14,781–14,797, https://doi.org/10.1029/91JC01037.

Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78:1,069–1,079, https://doi.org/10.1175/1520-0477(1997)078<1069:​APICOW>2.0.CO;2.

McClatchie, S., R. Cowen, K. Nieto, A. Greer, J.Y. Luo, C. Guigand, D. Demer, D. Griffith, and D. Rudnick. 2012. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight. Journal of Geophysical Research 117, C04020, https://doi.org/10.1029/2011JC007565.

McClatchie, S., R. Goericke, R. Cosgrove, G. Auad, and R. Vetter. 2010. Oxygen in the Southern California Bight: Multidecadal trends and implications for demersal fisheries. Geophysical Research Letters 37, L19602, https://doi.org/​10.1029/2010gl044497.

Miller, A.J., D.R. Cayan, T.P. Barnett, N.E. Graham, and J.M. Oberhuber. 1994. The 1976–77 climate shift of the Pacific Ocean. Oceanography 7(1):21–26, https://doi.org/​10.5670/oceanog.1994.11.

Nonacs, P., P.E. Smith, and M. Mangel. 1998. Modeling foraging in the northern anchovy (Engraulis mordax): Individual behavior can predict school dynamics and population biology. Canadian Journal of Fisheries and Aquatic Sciences 55:1,179–1,188, https://doi.org/​10.1139/f98-010.

Ohman, M.D., J.R. Powell, M. Picheral, and D.W. Jensen. 2012a. Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. Journal of Plankton Research 34:815–827, https://doi.org/​10.1093/plankt/fbs028.

Ohman, M.D., G.H. Rau, and P.M. Hull. 2012b. Multi-decadal variations in stable N isotopes of California Current zooplankton. Deep Sea Research Part I 60:46–55, https://doi.org/​10.1016/j.dsr.2011.11.003.

Ohman, M.D., D.L. Rudnick, A. Chekalyuk, R.E. Davis, R.A. Feely, M. Kahru, H.-J. Kim, M.R. Landry, T.R. Martz, C.L. Sabine, and U. Send. 2013. Autonomous ocean measurements in the California Current Ecosystem. Oceanography 26(3):18–25, https://doi.org/​10.5670/oceanog.2013.41.

Pickett, M.H., and J.D. Paduan. 2003. Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). Journal of Geophysical Research 108, 3327, https://doi.org/10.1029/2003JC001902.

Roemmich, D. 1992. Ocean warming and sea level rise along the southwest US coast. Science 257:373–375, https://doi.org/10.1126/science.257.5068.373.

Romagnan, J.-B. 2007. Vertical habitat shift of mesozooplankton assemblages in the California Current. DEA thesis, Université Pierre et Marie Curie (Paris 6).

Rykaczewski, R.R., and D.M. Checkley Jr. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proceedings of the National Academy of Sciences of the United States of America 105:1,965–1,970, https://doi.org/10.1073/pnas.0711777105.

Samo, T.J., B.E. Peldler, G.I. Ball, A.L. Pasulka, A.G. Taylor, L.I. Aluwihare, F. Azam, R. Goericke, and M.R. Landry. 2012. Microbial distribution and activity across a water mass frontal zone in the California Current Ecosystem. Journal of Plankton Research 34:802–814, https://doi.org/10.1093/plankt/fbs048.

Stukel, M.R., M.D. Ohman, C.R. Benitez-Nelson, and M.R. Landry. In press. Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Marine Ecology Progress Series, https://doi.org/10.3354/meps10453.

Taylor, A.G., R. Goericke, M.R. Landry, K.E. Selph, D.A. Wick, and M.J. Roadman. 2012. Sharp gradients in phytoplankton community structure across a frontal zone in the California Current Ecosystem. Journal of Plankton Research 34:778–789, https://doi.org/10.1093/plankt/fbs036.

Todd, R.E., D.L. Rudnick, R.E. Davis, and M.D. Ohman. 2011. Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophysical Research Letters 38, L03609, https://doi.org/10.1029/2010gl046376.

van der Lingen, C.D., L. Hutchings, and J.G. Field. 2006. Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: Are species alternations between small pelagic fish trophodynamically mediated? African Journal of Marine Science 28:465–477, https://doi.org/​10.2989/18142320609504199.

Venrick, E.L. 2000. Summer in the Ensenada Front: The distribution of phytoplankton species, July 1985 and September 1988. Journal of Plankton Research 22:813–841, https://doi.org/10.1093/plankt/22.5.813.

Venrick, E.L., J.A. McGowan, and A.W. Mantyla. 1973. Deep maxima of photosynthetic chlorophyll in Pacific Ocean. Fishery Bulletin 71:41–52.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.