Oceanography The Official Magazine of
The Oceanography Society
Volume 30 Issue 01

View Issue TOC
Volume 30, No. 1
Pages 22 - 35

OpenAccess

Harmful Algal Blooms in Eastern Boundary Upwelling Systems: A GEOHAB Core Research Project

By Grant C. Pitcher , A. Bernales Jiménez, Raphael M. Kudela , and Beatriz Reguera 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

This paper highlights advances in knowledge about the ecology and oceanography of harmful algal blooms (HABs) as guided by the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Core Research Project “HABs in Upwelling Systems.” The diverse group of plankton that comprise HAB species in upwelling systems remains dynamic in terms of the organisms observed, the frequency and density of blooms, and the presence or absence of toxins. Topics covered include emerging HAB problems and the forever-changing threat that HABs pose to the economic viability of fisheries and aquaculture, the health and diversity of upwelling systems, and the recreational activities supported within these systems. We provide an update of our knowledge of the seeding and nutrient strategies of HAB species in upwelling systems, as well as further evidence of the strong influence of physical processes in HAB development and transport on a spectrum of scales. We also assess our progress toward achieving the GEOHAB goal of improved prediction of HABs through evaluation of a variety of predictive models. Finally, we seek to identify the response of HABs to global change through the increasing availability of long-term data sets.

Citation

Pitcher, G.C., A.B. Jiménez, R.M. Kudela, and B. Reguera. 2017. Harmful algal blooms in eastern boundary upwelling systems: A GEOHAB Core Research Project. Oceanography 30(1):22–35, https://doi.org/10.5670/oceanog.2017.107.

References

Adams, N.G., M. Lesoing, and V.L. Trainer. 2000. Environmental conditions associated with domoic acid in razor clams on the Washington coast. Journal of Shellfish Research 19:1,007–1,015.

Álvarez-Salgado, X.A., F.G. Figueiras, M.J. Fernández-Reiriz, U. Labarta, L. Peteiro, and S. Piedracoba. 2011. Control of lipophilic shellfish poisoning outbreaks by seasonal upwelling and continental runoff. Harmful Algae 10:121–129, https://doi.org/10.1016/j.hal.2010.08.003.

Álvarez-Salgado, X.A., U. Labarta, M.J. Fernández-Reiriz, F.G. Figueiras, G. Rosón, S. Piedracoba, R. Filgueira, and J.M. Cabanas. 2008. Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful Algae 7:849–855, https://doi.org/10.1016/​j.hal.2008.04.007.

Anderson, C.R., R.M. Kudela, C. Benitez-Nelson, E. Sekula-Wood, C.T. Burrell, Y. Chao, G. Langlois, J. Goodman, and D.A. Siegel. 2011. Detecting toxic diatom blooms from ocean colour and a regional ocean model. Geophysical Research Letters 38, L04603, https://doi.org/10.1029/2010GL045858.

Anderson, C.R., D.A. Siegel, R.M. Kudela, and M.A. Brzezinski. 2009. Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 8:478–492, https://doi.org/​10.1016/j.hal.2008.10.005.

Barron, J.A., D. Bukry, D.B. Field, and B. Finney. 2013. Response of diatoms and silicoflagellates to climate change and warming in the California Current during the past 250 years and the recent rise of the toxic diatom Pseudo-nitzschia australis. Quaternary International 310:140–154, https://doi.org/10.1016/j.quaint.2012.07.002.

Baylón, M., S. Sánchez, V. Bárcena, J. López, and E. Mamani. 2015. First record of potentially toxic dinoflagellate, Alexandrium minutum Halim 1960, from the Peruvian coast. Revista Peruana de Biología 22:113–118, https://doi.org/10.15381/rpb.v22i1.11129.

De Wit, P., L. Rogers-Bennett, R.M. Kudela, and S.P. Palumbi. 2014. Forensic genomics as a novel tool for identifying the causes of mass mortality events. Nature Communications 5:3652, https://doi.org/10.1038/ncomms4652.

Díaz, P.A., B. Reguera, M. Ruiz-Villarreal, Y. Pazos, L. Velo-Suárez, H. Berger, and M. Sourisseau. 2013. Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Marine Drugs 11:2,964–2,981, https://doi.org/10.3390/md11082964.

Díaz, P.A., M. Ruiz-Villarreal, Y. Pazos, T. Moita, and B. Reguera. 2016. Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145–159, https://doi.org/10.1016/​j.hal.2015.11.007.

Díaz, P.A., M. Ruiz-Villarreal, L. Velo-Suárez, I. Ramilo, P. Gentien, M. Lunven, L. Fernand, R. Raine, and B. Reguera. 2014. Tidal and wind-event variability and the distribution of two groups of Pseudo-nitzschia species in an upwelling-influenced Ría. Deep Sea Research Part II 101:163–179, https://doi.org/10.1016/j.dsr2.2013.09.043.

Escalera, L., B. Reguera, T. Moita, Y. Pazos, M. Cerejo, J.M. Cabanas, and M. Ruiz-Villarreal. 2010. Bloom dynamics of Dinophysis acuta in an upwelling system: In situ growth versus transport. Harmful Algae 9:312–322, https://doi.org/10.1016/​j.hal.2009.12.002.

Frolov, S., R.M. Kudela, and J.G. Bellingham. 2013. Monitoring harmful algal blooms in the era of diminishing resources: A case study of the US West Coast. Harmful Algae 21–22:1–12, https://doi.org/​10.1016/j.hal.2012.11.001.

GEOHAB. 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. P. Glibert and G. Pitcher, eds, SCOR and IOC, Baltimore and Paris, 87 pp.

GEOHAB. 2003. Global Ecology and Oceanography of Harmful Algal Blooms, Implementation Plan. P. Gentien, G. Pitcher, A. Cembella, and P. Glibert, eds, SCOR and IOC, Baltimore and Paris, 36 pp.

GEOHAB. 2005. Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB Core Research Project: HABs in Upwelling Systems. G. Pitcher, T. Moita, V. Trainer, R. Kudela, F. Figuieras, and T. Probyn, eds, IOC and SCOR, Paris and Baltimore, 82 pp.

GEOHAB. 2011. GEOHAB Modelling: A Workshop Report. D.J. McGillicuddy, P.M. Glibert, E. Berdalet, C. Edwards, P. Franks, and O. Ross, eds, IOC and SCOR, Paris and Newark, Delaware, 85 pp.

Giddings, S.N., P. MacCready, B.M. Hickey, N.S. Banas, K.A. Davis, S.A. Siedlecki, V.L. Trainer, R.M. Kudela, N.A. Pelland, and T.P. Connolly. 2014. Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. Journal of Geophysical Research Oceans 119:2,439–2,461, https://doi.org/10.1002/2013JC009622.

Hickey, B.M., V.L. Trainer, P.M. Kosro, N.G. Adams, T.P. Connolly, N.B. Kachel, and S.L. Geier. 2013. A springtime source of toxic Pseudo-nitzschia cells on razor clam beaches in the Pacific Northwest. Harmful Algae 25:1–14, https://doi.org/10.1016/​j.hal.2013.01.006.

Howard, M.D.A., M. Sutula, D.A. Caron, Y. Chao, J.D. Farrara, H. Frenzel, H. Fenzel, B. Jones, G. Robertson, K. McLaughlin, and A. Sengupta. 2014. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnology and Oceanography 59:285–297, https://doi.org/10.4319/lo.2014.59.1.0285.

Hubbart, B., G.C. Pitcher, B. Krock, and A.D. Cembella. 2012. Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae 20:30–41, https://doi.org/10.1016/​j.hal.2012.07.005.

Jessup, D.A., M.A. Miller, J.P. Ryan, H.M. Nevins, H.A. Kerkering, A. Mekebri, D.B. Crane, T.A. Johnson, and R.M. Kudela. 2009. Mass stranding of marine birds caused by a surfactant-​producing red tide. PLoS ONE 4(2):e4550, https://doi.org/10.1371/journal.pone.0004550

Joyce, L.B., and G.C. Pitcher. 2006. Cysts of Alexandrium catenella on the west coast of South Africa: Distribution and characteristics of germination. African Journal of Marine Science 28:295–298, https://doi.org/​10.2989/18142320609504165.

Kahru, M., B.G. Mitchell, A. Díaz, and M. Miura. 2008. MODIS detects a devastating algal bloom in Paracas Bay, Peru. Eos, Transactions American Geophysical Union 85:465–472, https://doi.org/​10.1029/2004EO450002.

Lane, J.Q., P.T. Raimondi, and R.M. Kudela. 2009. Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. Marine Ecology Progress Series 383:37–51, https://doi.org/10.3354/meps07999.

Lecher, A.L., K. Mackey, R. Kudela, J. Ryan, A. Fisher, J. Murray, and A. Paytan. 2015. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey Bay, CA. Environmental Science & Technology 49:6,665–6,673, https://doi.org/10.1021/acs.est.5b00909.

Louw, D.C., G.J. Doucette, and E. Voges. 2016. Annual patterns, distribution and long-term trends of Pseudo-nitzschia species in the northern Benguela upwelling system. Journal of Plankton Research 39:35–47, https://doi.org/10.1093/plankt/fbw079

Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1:493–509.

Mateus, M., A. Silva, H. de Pablo, M.T. Moita, T. Quental, and L. Pinto. 2013. Using Lagrangian elements to simulate alongshore transport of harmful algal blooms. Pp. 235–247 in Ocean Modelling for Coastal Management: Case Studies with MOHID. M. Mateus and R. Neves, eds, IST Press, Lisbon, Portugal. 

McCabe, R.M., B.M. Hickey, R.M. Kudela, K.A. Lefebvre, N.G. Adams, B.D. Bill, F.M.D. Gulland, R.E. Thomson, W.P. Cochlan, and V.L. Trainer. 2016. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters 43:10,366–10,376, https://doi.org/10.1002/2016GL070023.

McKibben, S.M., W. Peterson, A.M. Wood, V.L. Trainer, M. Hunter, and A.E. White. 2017. Climatic regulation of the neurotoxin domoic acid. Proceedings of the National Academy of Sciences of the United States of America 114:239–244, https://doi.org/10.1073/pnas.1606798114.

Moore, S.K., J.A. Johnstone, N.S. Banas, and E.P. Salathé. 2015. Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11, https://doi.org/10.1016/j.hal.2015.06.008.

Moore, S.K., N.J. Mantua, and E.P. Salathé. 2011. Past trends and future scenarios for environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound shellfish. Harmful Algae 10:521–529, https://doi.org/10.1016/​j.hal.2011.04.004.

Moore, S.K., N.J. Mantua, V.L. Trainer, and B.M. Hickey. 2009. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8:463–477, https://doi.org/10.1016/​j.hal.2008.10.003.

Palma, S., H. Mouriño, A. Silva, M.I. Barão, and M.T. Moita. 2010. Can Pseudo-nitzschia blooms be modeled by coastal upwelling in Lisbon Bay? Harmful Algae 9:294–303, https://doi.org/10.1016/​j.hal.2009.11.006.

Pazos, Y., F. Arévalo, J. Correa, and C. Salgado. 2016. Initiation, maintenance and dissipation of a toxic bloom of Dinophysis acuminata and Pseudo-nitzschia australis: A comparison of the ria of Arousa and ria of Pontevedra. P. 100 in 17th International Conference on Harmful Algae. Florianápolis, Brazil, October 9–13, 2016, Book of Abstracts.

Peacock, M.B., and R.M. Kudela. 2014. Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen and phosphorus limitation. Limnology and Oceanography 59:660–673, https://doi.org/10.4319/lo.2014.59.3.0660.

Pérez, F.F., X.A. Padín, Y. Pazos, M. Gilcoto, J.M. Cabanas, P.C. Pardo, M.D. Doval, and L. Fariña-Busto. 2010. Plankton response to weakening of the Iberian coastal upwelling. Global Change Biology 16:1,258–1,267, https://doi.org/​10.1111/j.1365-2486.2009.02125.x.

Phillips, E.M., J.E. Zamon, H.M. Nevins, C.M. Gibble, R.S. Duerr, and L.H. Kerr. 2011. Summary of birds killed by a harmful algal bloom along the South Washington and North Oregon Coasts during October 2009. Northwestern Naturalist 92:120–126, https://doi.org/​10.1898/10-32.1.

Pinto, L., M. Mateus, and A. Silva. 2016. Modeling the transport pathways of harmful algal blooms in the Iberian coast. Harmful Algae 53:8–16, https://doi.org/10.1016/j.hal.2015.12.001.

Pitcher, G.C. 2012. Harmful algae: The requirement for species-specific information. Harmful Algae 14:1–4, https://doi.org/10.1016/j.hal.2011.10.011.

Pitcher, G.C., F.G. Figueiras, B.M. Hickey, and M.T. Moita. 2010. The physical oceanography of upwelling systems and the development of harmful algal blooms. Progress in Oceanography 85:5–32, https://doi.org/10.1016/j.pocean.2010.02.002.

Pitcher, G.C., and J.B. Joyce. 2009. Dinoflagellate cyst production on the southern Namaqua shelf of the Benguela upwelling system. Journal of Plankton Research 31:865–875, https://doi.org/10.1093/plankt/fbp040.

Pitcher, G.C., and G. Nelson. 2006. Characteristics of the surface boundary layer important to the development of red tide on the southern Namaqua shelf of the Benguela upwelling system. Limnology and Oceanography 51:2,660–2,674, https://doi.org/​10.4319/lo.2006.51.6.2660.

Pitcher, G., and S. Pillar. 2010. Harmful algal blooms in eastern boundary upwelling systems. Progress in Oceanography 85:1–4, https://doi.org/10.1016/​j.pocean.2010.02.001.

Pitcher, G.C., and T.A. Probyn. 2011. Anoxia in southern Benguela during the autumn of 2009 and its linkage to a bloom of the dinoflagellate Ceratium balechii. Harmful Algae 11:23–32, https://doi.org/​10.1016/j.hal.2011.07.001.

Pitcher, G.C., T.A. Probyn, A. du Randt, A.J. Lucas, S. Bernard, H. Evers-King, T. Lamont, and L. Hutchings. 2014. Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system. Journal of Geophysical Research 119:2,183–2,200, https://doi.org/10.1002/2013jc009443.

Reifel, K.M., A.A. Corcoran, C. Cash, R. Shipe, and B.H. Jones. 2013. Effects of a surfacing effluent plume on a coastal phytoplankton community. Continental Shelf Research 60:38–50, https://doi.org/10.1016/j.csr.2013.04.012.

Rines, J.E.B., M.N. McFarland, P.L. Donaghay, and J.M. Sullivan. 2010. Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA. Continental Shelf Research 30:66–80, https://doi.org/10.1016/​j.csr.2009.11.001.

Ruiz-Villarreal, M., L.M. García-García, M. Cobas, P.A. Díaz, and B. Reguera. 2016. Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia. Harmful Algae 53:40–52, https://doi.org/10.1016/​j.hal.2015.12.003.

Ryan, J.P., M.A. McManus, and J.M. Sullivan. 2010. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Continental Shelf Research 30:7–16, https://doi.org/10.1016/​j.csr.2009.10.017.

Seegers, B.N., J.M. Birch, R. Marin III, C.A. Scholin, D.A. Caron, E.L. Seubert, M.D.A. Howard, G.L. Robertson, and B.H. Jones. 2015. Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnology and Oceanography 60:754–764, https://doi.org/10.1002/lno.10082.

Seeyave, S., T.A. Probyn, G.C. Pitcher, M.I. Lucas, and D.A. Purdie. 2009. Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa. Marine Ecology Progress Series 379:91–107, https://doi.org/10.3354/meps07898.

Sekula-Wood, E., C. Benitez-Nelson, S. Morton, C. Anderson, C. Burrell, and R. Thunell. 2011. Pseudo-nitzschia and domoic acid fluxes in Santa Barbara Basin (CA) from 1993 to 2008. Harmful Algae 10:567–575, https://doi.org/10.1016/​j.hal.2011.04.009.

Shanks, A.L., S.G. Morgon, J. MacMahan, J.H.M. Reniers, R. Kudela, M. Jarvis, J. Brown, A. Fujimura, L. Ziccarelli, and C. Griesemer. 2016. Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algae 55:172–178, https://doi.org/10.1016/​j.hal.2016.03.004.

Silva, A., L. Pinto, S.M. Rodrigues, H. de Pablo, M. Santos, T. Moita, and M. Mateus. 2016. A HAB warning system for shellfish in Portugal. Harmful Algae 53:33–39, https://doi.org/10.1016/​j.hal.2015.11.017.

Smayda, T.J. 2002. Turbulence, watermass stratification and harmful algal blooms: An alternative view and frontal zones as “peragic seed banks.” Harmful Algae 1:95–112, https://doi.org/10.1016/S1568-9883(02)00010-0.

Smayda, T.J., and V.L. Trainer. 2010. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Progress in Oceanography 85:92–107, https://doi.org/10.1016/j.pocean.2010.02.006.

Tatters, A.O., L.J. Flewelling, F. Fu, A.A. Granholm, and D.A. Hutchins. 2013. High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from southern California waters. Harmful Algae 30:37–43, https://doi.org/​10.1016/j.hal.2013.08.007.

Tatters, A.O., F. Fu, and D.A. Hutchins. 2012. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE 7:e32116, https://doi.org/10.1371/journal.pone.0032116.

Tenorio, C., E. Uribe, P. Gil-Kodaka, J. Blanco, and G. Álvarez. 2016. Morphological and toxicological studies of Pseudo-nitzschia species from the central coast of Peru. Diatom Research 31:331–338, https://doi.org/10.1080/0269249X.2016.1247018.

Tillmann, U., D. Jaén, L. Fernández, M. Gottschling, M. Witt, J. Blanco, and B. Krock. 2017. Amphidoma languida (Amphidomatacea, Dinophyceae) with a novel azaspiracid toxin profile identified as the cause of molluscan contamination at the Atlantic coast of southern Spain. Harmful Algae 62:113–126, https://doi.org/10.1016/j.hal.2016.12.001.

Trainer, V.L., G.C. Pitcher, B. Reguera, and T.J. Smayda. 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography 85:33–52, https://doi.org/10.1016/​j.pocean.2010.02.003.

Van der Lingen, C.D., L. Hutchings, T. Lamont, and G.C. Pitcher. 2016. Climate change, dinoflagellate blooms and sardine in the southern Benguela Current Large Marine Ecosystem. Environmental Development 17:230–243, https://doi.org/10.1016/​j.envdev.2015.09.004.

Velo-Suárez, L., L. Fernand, P. Gentien, and B. Reguera. 2010. Hydrodynamic conditions associated with the formation, maintenance and dissipation of a phytoplankton thin layer in a coastal upwelling system. Continental Shelf Research 30:193–202, https://doi.org/10.1016/​j.csr.2009.11.002.

Velo-Suárez, L., S. González-Gil, Y. Pazos, and B. Reguera. 2014. The growth season of Dinophysis acuminata in an upwelling system embayment: A conceptual model based on in situ measurements. Deep Sea Research Part II 101:141–151, https://doi.org/10.1016/j.dsr2.2013.03.033.

White, A.E., K.S. Watkins-Brandt, S.M. McKibben, A.M. Wood, M. Hunter, Z. Forster, X. Du, and W.T. Peterson. 2014. Large-scale bloom of Akashiwo sanguinea in the Northern California current system in 2009. Harmful Algae 37:38–46, https://doi.org/10.1016/j.hal.2014.05.004.

Wyatt, T. 2014. Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Research Part II 101:32–49, https://doi.org/10.1016/​j.dsr2.2012.12.006.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.