Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 33 - 39


Patagonian Dust as a Source of Macronutrients in the Southwest Atlantic Ocean

Flavio E. Paparazzo Augusto C. Crespi-AbrilRodrigo J. GonçalvesElena S. BarbieriLeilén L. Gracia VillalobosMiriam E. SolísGaspar Soria
Article Abstract

The role of Patagonian wind-borne dust as a source of macronutrients to the surface waters of the Southwest Atlantic Ocean was evaluated for the first time. During spring 2016, a series of experiments with dust was conducted to evaluate the dynamics of macronutrient dissolution in seawater. The results showed a differential contribution of macronutrients to seawater depending on the dust source and the amount added. Addition of a conservative amount of Patagonian dust to the sea­water contributed nitrate (NO3) and silicic acid (Si(OH)4), but not phosphate (PO43–). Additional dust input to the system resulted in higher macronutrient concentrations. Particles collected from a nearby burned field did not contribute any macronutrients to the seawater. Thus, each dust event may affect biological productivity differently, depending on the source of the particles. Dissolution experiments suggest that macronutrients from dust are available immediately after particle deposition on the sea surface. The study includes field measurements of macronutrient concentrations before and after a dust storm at three nearshore marine stations. The data are consistent with macronutrient increase after the storms. Dust storms could become a very important source of nutrients to the ocean in future global warming scenarios.


Paparazzo, F.E., A.C. Crespi-Abril, R.J. Gonçalves, E.S. Barbieri, L.L. Gracia Villalobos, M.E. Solís, and G. Soria. 2018. Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31(4):33–39, https://doi.org/10.5670/oceanog.2018.408.

Supplementary Materials

Al-Taani, A.A., M. Rashdan, and S. Khashashneh. 2015. Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: Rate and trace elements. Marine Pollution Bulletin 92(1):252–258, https://doi.org/10.1016/j.marpolbul.2014.11.047.

Anderson, R.F., H. Cheng, R.L. Edwards, M.Q. Fleisher, C.T. Hayes, K.-F. Huang, D. Kadko, P.J. Lam, W.M. Landing, Y. Lao, and others. 2016. How well can we quantify dust deposition to the ocean? Philosophical Transactions of the Royal Society A 374(2081):20150285, https://doi.org/​10.1098/​rsta.2015.0285.

Baker, A.R., S.D. Kelly, K.F. Biswas, M. Witt, and T.D. Jickells. 2003. Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters 30(24):2296, https://doi.org/​10.1029/​2003GL018518.

Ben-Ami, Y., I. Koren, and O. Altaratz. 2009. Patterns of North African dust transport over the Atlantic: Winter vs. summer, based on CALIPSO first year data. Atmospheric Chemistry and Physics 9(20):7,867–7,875, https://doi.org/10.5194/acp-9-7867-2009.

Bergh, E.W., and J.S. Compton. 2015. A one-year post-fire record of macronutrient cycling in a mountain sandstone fynbos ecosystem, South Africa. South African Journal of Botany 97:48–58, https://doi.org/​10.1016/​j.sajb.2014.11.010.

Bertiller, M., and A. Bisigato. 1998. Vegetation dynamics under grazing disturbance. The state-and-​transition model for the Patagonian steppes. Ecología Austral 8:191–199.

Carmichael, G.R., Y. Zhang, L.L. Chen, M.S. Hong, and H. Ueda. 1996. Seasonal variation of aerosol composition at Cheju Island, Korea. Atmospheric Environment 30(13):2,407–2,416.

Christensen, N.L. 1994. The effects of fire on physical and chemical properties of soils in Mediterranean-climate shrublands. Pp. 79–95 in The Role of Fire in Mediterranean-Type Ecosystems. J.M. Moreno and W.C. Oechel, eds, Springer Ecological Studies Springer 107, New York, NY, https://doi.org/​10.1007/​978-1-4613-8395-6_5.

Crespi-Abril, A.C., E.S. Barbieri, L. Gracia Villalobos, G. Soria, F.E. Paparazzo, J.M. Paczkowska, and R.J. Gonçalves. 2018a. Perspective: Continental inputs of matter into planktonic ecosystems of the Argentinean continental shelf—the case of atmospheric dust. Pp. 87–99 in Plankton Ecology of the Southwestern Atlantic: From the Subtropical to the Subantarctic Realm. M.S. Hoffmeyer, M. Sabatini, F. P. Brandini, D.L. Calliari, and N.H. Santinelli, eds, Springer, https://doi.org/​10.1007/​978-3-319-77869-3_5.

Crespi-Abril, A.C., A.M.I. Montes, G.N. Williams, and M.F. Carrasco. 2016. Uso de sensores remotos para la detección de eventos de transporte eólico de sedimentos hacia ambientes marinos en Patagonia. Meteorologica 41(2):33–47, http://www.scielo.org.ar/​​pdf/​meteoro/v41n2/v41n2a02.pdf.

Crespi-Abril, A.C., G. Soria, A. De Cian, and C. López-Moreno. 2018b. Roaring forties: An analysis of a decadal series of data of dust in Northern Patagonia. Atmospheric Environment 177:111–119, https://doi.org/10.1016/j.atmosenv.2017.11.019.

Gaiero, D.M. 2007. Dust provenance in Antarctic ice during glacial periods: From where in southern South America? Geophysical Research Letters 34, L17707, https://doi.org/10.1029/2007GL030520.

Gaiero, D.M., J.-L. Probst, P.J. Depetris, S.M. Bidart, and L. Leleyter. 2003. Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean. Geochimica et Cosmochimica Acta 67(19):3,603–3,623, https://doi.org/​10.1016/​S0016-7037(03)00211-4.

Guo, L., Y. Chen, F. Wang, X. Meng, Z. Xu, and G. Zhuang. 2014. Effects of Asian dust on the atmospheric input of trace elements to the East China Sea. Marine Chemistry 163:19–27, https://doi.org/​10.1016/j.marchem.2014.04.003.

Herut, B., M.D. Krom, G. Pan, and R. Mortimer. 1999. Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact. Limnology and Oceanography 44(7):1,683–1,692, https://doi.org/​10.4319/lo.1999.44.7.1683.

Jickells, T.D., Z.S. An, K.K. Andersen, A.R. Baker, G. Bergametti, N. Brooks, J.J. Cao, P.W. Boyd, R.A. Duce, K.A. Hunter, and others. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71, https://doi.org/10.1126/science.1105959.

Johnson, M.S., N. Meskhidze, F. Solmon, S. Gassó, P.Y. Chuang, D.M. Gaiero, R.M. Yantosca, S. Wu, Y. Wang, and C. Carouge. 2010. Modeling dust and soluble iron deposition to the South Atlantic Ocean. Journal of Geophysical Research 115, D15202, https://doi.org/10.1029/2009JD013311.

Krueger, B.J., V.H. Grassian, J.P. Cowin, and A. Laskin. 2004. Heterogeneous chemistry of individual mineral dust particles from different dust source regions: The importance of particle mineralogy. Atmospheric Environment 38(36):6,253–6,261, https://doi.org/10.1016/j.atmosenv.2004.07.010.

Labraga, J.C. 1994. Extreme winds in the Pampa del Castillo Plateau, Patagonia, Argentina, with reference to wind farm settlement. Journal of Applied Meteorology 33(1):85–95, https://doi.org/10.1175/1520-0450(1994)033​<0085:EWITPD>2.0.CO;2.

Maher, B.A., J.M. Prospero, D. Mackie, D. Gaiero, P.P. Hesse, and Y. Balkanski. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99(1):61–97, https://doi.org/10.1016/j.earscirev.2009.12.001.

Mahowald, N.M., A.R. Baker, G. Bergametti, N. Brooks, R.A. Duce, T.D. Jickells, N. Kubilay, J.M. Prospero, and I. Tegen. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles 19(4), GB4025, https://doi.org/​10.1029/​2004GB002402.

Martino, M., D. Hamilton, A.R. Baker, T.D. Jickells, T. Bromley, Y. Nojiri, B. Quack, and P.W. Boyd. 2014. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity. Global Biogeochemical Cycles 28(7):712–728, https://doi.org/10.1002/2013GB004794.

Mendez, J., C. Guieu, and J. Adkins. 2010. Atmospheric input of manganese and iron to the ocean: Seawater dissolution experiments with Saharan and North American dusts. Marine Chemistry 120(1):34–43, https://doi.org/10.1016/​j.marchem.2008.08.006.

Millero, F.J. 2013. Chemical Oceanography, 4th ed. CRC Press, 571 pp.

Özsoy, T. 2003. Atmospheric wet deposition of soluble macro-nutrients in the Cilician Basin, north-​eastern Mediterranean Sea. Journal of Environmental Monitoring 5(6):971–976, https://doi.org/​10.1039/​b309636j.

Paparazzo, F.E., L. Bianucci, I.R. Schloss, G.O. Almandoz, M. Solís, and J.L. Esteves. 2010. Cross-frontal distribution of inorganic nutrients and chlorophyll-a on the Patagonian Continental Shelf of Argentina during summer and fall. Revista de Biología Marina y Oceanografía 45(1):107–119, https://doi.org/10.4067/s0718-19572010000100010.

Paparazzo, F.E., G.N. Williams, J.P. Pisoni, M. Solís, J.L. Esteves, and D.E. Varela. 2017. Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll-a in SW Atlantic waters: The case of the Gulf of San Jorge, Argentina. Journal of Marine Systems 172:43–50, https://doi.org/10.1016/​j.jmarsys.​2017.02.007.

Paruelo, J.M., W. Lauenroth, H.E. Epstein, I.C. Burke, M.R. Aguiar, and O.E. Sala. 1995. Regional climatic similarities in the temperate zones of North and South America. Journal of Biogeography 22:915–925, https://doi.org/​10.2307/2845992.

Pulido-Villena, E., V. Rérolle, and C. Guieu. 2010. Transient fertilizing effect of dust in P-deficient LNLC surface ocean. Geophysical Research Letters 37(1), https://doi.org/10.1029/2009GL041415.

Ridame, C., J. Dekaezemacker, C. Guieu, S. Bonnet, S. L’Helguen, and F. Malien. 2014. Contrasted Saharan dust events in LNLC environments: Impact on nutrient dynamics and primary production. Biogeosciences 11(17):4,783–4,800, https://doi.org/​10.5194/​bg-11-4783-2014.

Russell, J.L., K.W. Dixon, A. Gnanadesikan, R.J. Stouffer, and J.R. Toggweiler. 2006. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. Journal of Climate 19:6,382–6,390, https://doi.org/​10.1175/​JCLI3984.1.

Simonella, L.E., M.E. Palomeque, P.L. Croot, A. Stein, M. Kupczewski, A. Rosales, M.L. Montes, F. Colombo, M.G. García, G. Villarosa, and D.M. Gaiero. 2015. Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes. Global Biogeochemical Cycles 29(8):1,125–1,144, https://doi.org/​10.1002/​2015GB005177.

Skalar Analytical® V.B. 2005. Skalar Methods - DIAMOND Issue 081505/MH/99235956. Breda, The Netherlands.

Stockdale, A., M.D. Krom, R.J. Mortimer, L.G. Benning, K.S. Carslaw, R.J. Herbert, and A. Nenes. 2016. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proceedings of the National Academy of Sciences of the United States of America 113(51):14,639–14,644, https://doi.org/​10.1073/pnas.1608136113.

Thompson, D.W.J., S. Solomon, P.J. Kushner, M.H. England, K.M. Grise, and D.J. Karoly. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4:741–749, https://doi.org/10.1038/ngeo1296.

Washington, R., M. Todd, N.J. Middleton, and A.S. Goudie. 2003. Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals of the Association of American Geographers 93(2):297–313, https://doi.org/​10.1111/1467-8306.9302003.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.