Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater carbonate system parameters and other interactive variables, integrating the results from different research approaches, and scaling results across different temporal and spatial scales.

Citation

Andersson, A.J., D.I. Kline, P.J. Edmunds, S.D. Archer, N. Bednaršek, R.C. Carpenter, M. Chadsey, P. Goldstein, A.G. Grottoli, T.P. Hurst, A.L. King, J.E. Kübler, I.B. Kuffner, K.R.M. Mackey, B.A. Menge, A. Paytan, U. Riebesell, A. Schnetzer, M.E. Warner, and R.C. Zimmerman. 2015. Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 28(2):16–27, https://doi.org/10.5670/oceanog.2015.27.

References

Andersson, A.J., N.R. Bates, and F.T. Mackenzie. 2007. Dissolution of carbonate sediments under rising pCO2 and ocean acidification: Observations from Devil’s Hole, Bermuda. Aquatic Geochemistry 13:237–264, https://doi.org/10.1007/s10498-007-9018-8.

Andersson, A., and F. Mackenzie. 2012. Revisiting four scientific debates in ocean acidification research. Biogeosciences 9:893–905, https://doi.org/10.5194/bg-9-893-2012.

Andersson, A.J., F.T. Mackenzie, and J.-P. Gattuso. 2011. Effects of ocean acidification on benthic processes, organisms, and ecosystems. Pp. 122–153 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, UK.

Andersson, A.J., F.T. Mackenzie, and A. Lerman. 2005. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. American Journal of Science 305:875–918, https://doi.org/10.2475/ajs.305.9.875.

Barry, J.P., C. Lovera, K.R. Buck, E.T. Peltzer, J.R. Taylor, P. Walz, P.J. Whaling, and P.G. Brewer. 2014. Use of a Free Ocean CO2 Enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin. Environmental Science & Technology 48:9,890–9,897, https://doi.org/10.1021/es501603r.

Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, B. Eudeline, C.J. Langdon, I. Jefferds, and others. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159, https://doi.org/10.5670/oceanog.2015.38.

Bates, N.R., Y.M. Astor, M.J. Church, K. Currie, J.E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J.M. Santana-Casiano. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27(1):126–141, https://doi.org/10.5670/oceanog.2014.16.

Beer, S., and E. Koch. 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Marine Ecology Progress Series 141:199–204, https://doi.org/10.3354/meps141199.

Beijbom, O., P.J. Edmunds, D.I. Kline, M.G. Mitchell, and D. Kriegman. 2012. Automated annotation of coral reef survey images. Pp. 1,170–1,177 in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/CVPR.2012.6247798.

Breitburg, D.L., J. Salisbury, J.M. Bernhard, W.-J. Cai, S. Dupont, S.C. Doney, K.J. Kroeker, L.A. Levin, W.C. Long, L.M. Milke, and others. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28(2):48–61, https://doi.org/10.5670/oceanog.2015.31.

Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365–365, https://doi.org/10.1038/425365a.

Chan, N., and S.R. Connolly. 2013. Sensitivity of coral calcification to ocean acidification: A meta-analysis. Global Change Biology 19:282–290, https://doi.org/10.1111/gcb.12011.

Collins, S., B. Rost, and T.A. Rynearson. 2014. Evolutionary potential of marine phytoplankton under ocean acidification. Evolutionary Applications 7:140–155, https://doi.org/10.1111/eva.12120.

Comeau, S., P. Edmunds, C. Lantz, and R. Carpenter. 2014. Water flow modulates the response of coral reef communities to ocean acidification. Scientific Reports 4, 6681, https://doi.org/10.1038/srep06681.

Cooley, S.R., and S.C. Doney. 2009. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters 4, 024007, https://doi.org/10.1088/1748-9326/4/2/024007.

Cooley, S.R., E.B. Jewett, J. Reichert, L. Robbins, G. Shrestha, D. Wieczorek, and S.B. Weisberg. 2015. Getting ocean acidification on decision makers’ to-do lists: Dissecting the process through case studies. Oceanography 28(2):198–211, https://doi.org/10.5670/oceanog.2015.42.

Crook, E., D. Potts, M. Rebolledo-Vieyra, L. Hernandez, and A. Paytan. 2012. Calcifying coral abundance near low-pH springs: Implications for future ocean acidification. Coral Reefs 31:239–245, https://doi.org/10.1007/s00338-011-0839-y.

Dissard, D., E. Douville, S. Reynaud, A. Juillet-Leclerc, P. Montagna, P. Louvat, and M. McCulloch. 2012. Light and temperature effects on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: Results from culturing experiments. Biogeosciences 9:4,589–4,605, https://doi.org/10.5194/bg-9-4589-2012.

Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Reviews in Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.

Dove, S.G., D.I. Kline, O. Pantos, F.E. Angly, G.W. Tyson, O. Hoegh-Guldberg. 2013. Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences of the United States of America 110:15,342–15,347, https://doi.org/10.1073/pnas.1302701110.

Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36:221–236, https://doi.org/10.1007/s12237-013-9594-3.

Dufault, A.M., V.R. Cumbo, T.-Y. Fan, and P.J. Edmunds. 2012. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society B 279:2,951–2,958, https://doi.org/10.1098/rspb.2011.2545.

Durako, M.J. 1993. Photosynthetic utilization of CO2(aq) and HCO3– in Thalassia testudinum (Hydrocharitaceae). Marine Biology 115:373–380, https://doi.org/10.1007/BF00349834.

Fabricius, K.E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. De’ath, R. Okazaki, N. Muehllehner, M.S. Glas, and J.M. Lough. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1:165–169, https://doi.org/10.1038/nclimate1122.

Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/10.1126/science.1155676.

Gattuso, J.-P., J. Bijma, M. Gehlen, U. Riebesell, and C. Turley. 2011. Ocean acidification: Knowns, unknowns, and perspectives. Chapter 15 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, UK.

Gattuso, J.-P., L. Hansson, and the EPOCA Consortium. 2009. European Project on Ocean Acidification (EPOCA): Objectives, products, and scientific highlights. Oceanography 22(4):190–201, https://doi.org/10.5670/oceanog.2009.108.

Gattuso, J.-P., W. Kirkwood, J.P. Barry, E. Cox, F. Gazeau, L. Hansson, I. Hendriks, D.I. Kline, P. Mahecek, S. Martin, and others. 2014. Free Ocean CO2 Enrichment (FOCE) systems: Present status and future developments. Biogeosciences 11:4,057–4,075, https://doi.org/10.5194/bg-11-4057-2014.

Gattuso, J.-P., and H. Lavigne. 2009. Technical note: Approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2,121–2,133, https://doi.org/10.5194/bg-6-2121-2009.

Gordillo, F.J., F.X. Niell, and F.L. Figueroa. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70.

Gunderson, L.H. 2000. Ecological resilience—in theory and application. Annual Review of Ecology and Systematics 31:425–439, https://doi.org/10.1146/annurev.ecolsys.31.1.425.

Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.-C. Bula. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99, https://doi.org/10.1038/nature07051.

Hauri, C., N. Gruber, M. Vogt, S.C. Doney, R.A. Feely, Z. Lachkar, A. Leinweber, A.M.P. McDonnell, M. Munnich, and G.-K. Plattner. 2013. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10:193–216, https://doi.org/10.5194/bg-10-193-2013.

Hendriks, I.e., C.M. Duarte, and M. Alvarez. 2010. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuarine Coastal and Shelf Science 86:157–164, https://doi.org/10.1016/j.ecss.2009.11.022.

Hettinger, A., E. Sanford, T.M. Hill, E.A. Lenz, A.D. Russell, and B. Gaylord. 2013. Larval carry-over effects from ocean acidification persist in the natural environment. Global Change Biology 19:3,317–3,326, https://doi.org/10.1111/gcb.12307.

Hoegh-Guldberg, O., P.J. Mumby, A.J. Hooten, R.S. Steneck. P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Calderia, and others. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1,737–1,742, https://doi.org/10.1126/science.1152509.

Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, and others. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PloS ONE 6:e28983, https://doi.org/10.1371/journal.pone.0028983.

Hönisch, B., A. Ridgwell, D.N. Schmidt, E. Thomas, S.J. Gibbs, A. Siuijs, R. Zeebe, L. Kump, R.C. Martindale, S.E. Green, and others. 2012. The geological record of ocean acidification. Science 335:1,058–1,063, https://doi.org/10.1126/science.1208277.

Hutchins, D., F.-X. Fu, Y. Zhang. 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography 52, https://doi.org/10.4319/lo.2007.52.4.1293.

Ilyina, T., D. Wolf-Gladrow, G. Munhoven, and C. Heinze. 2013. Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophysical Research Letters 40:5,909–5,914, https://doi.org/10.1002/2013GL057981.

Invers, O., R.C. Zimmerman, R.S. Alberte, M. Pérez, and J. Romero. 2001. Inorganic carbon sources for seagrass photosynthesis: An experimental evaluation of bicarbonate use in species inhabiting temperate waters. Journal of Experimental Marine Biology and Ecology 265:203–217, https://doi.org/10.1016/S0022-0981(01)00332-X.

Johnson, M.D., V.W. Moriarty, and R.C. Carpenter. 2014. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PloS ONE 9:e87678, https://doi.org/10.1371/journal.pone.0087678.

Jokiel, P.L., K.S. Rodgers, I.B. Kuffner, A.J. Andersson, E.F. Cox, and F.T. Mackenzie. 2008. Ocean acidification and calcifying reef organisms: A mesocosm investigation. Coral Reefs 27:473–483, https://doi.org/10.1007/s00338-008-0380-9.

Joos, F., T.L. Frölicher, M. Steinacher, and G.-K. Plattner. 2011. Impact of climate change mitigation on ocean acidification projections. Pp. 272–290 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, UK.

Kelly, M.W., and G.E. Hofmann. 2013. Adaptation and the physiology of ocean acidification. Functional Ecology 27:980–990, https://doi.org/10.1111/j.1365-2435.2012.02061.x.

Kleypas, J.A., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120, https://doi.org/10.1126/science.284.5411.118.

Kleypas, J., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins. 2006. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. Report of a workshop held April 18–20, 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey, 88 pp.

Kline, D.I., L. Teneva, C. Hauri, K. Schneider, T. Miard, A. Chai, M. Marker, R. Dunbar, K. Caldeira, B. Lazar, and others. In press. Six month in situ high-resolution carbonate chemistry and temperature study on a coral reef flat reveals that anomalous pH and temperature conditions are unsynchronized. PLoS ONE.

Kline, D.I., L. Teneva, K. Schneider, T. Miard, A. Chai, M. Marker, K. Headley, B. Opdyke, M. Nash, M. Valetich, and others. 2012. A short-term in situ CO2 enrichment experiment on Heron Island (GBR) accurately manipulates carbonate chemistry and causes variable physiological response in coral, crustose coralline algae and sediments. Scientific Reports 2:413, https://doi.org/10.1038/srep00413.

Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology 19:1,884–1,896, https://doi.org/10.1111/gcb.12179.

Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13:1,419–1,434, https://doi.org/10.1111/j.1461-0248.2010.01518.x.

Kübler, J.E., A.M. Johnston, and J.A. Raven. 1999. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant, Cell & Environment 22:1,303–1,310, https://doi.org/10.1046/j.1365-3040.1999.00492.x.

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, https://doi.org/10.5670/oceanog.2009.100.

Levin, L.A., B. Hönisch, and C.A. Frieder. 2015. Geochemical proxies for estimating faunal exposure to ocean acidification. Oceanography 28(2):62–73, https://doi.org/10.5670/oceanog.2015.32.

Levin, S.A. 1992. The problem of scale and pattern in ecology. Ecology 73:1,943–1,967, https://doi.org/10.2307/1941447.

Levin, S.A., M.A. Harwell, J.R. Kelly, and K.D. Kimball. 1989. Ecotoxicology: Problems and Approaches. Springer-Verlag, New York, https://doi.org/10.1007/978-1-4612-3520-0.

Liu, J., M.G. Weinbauer, C. Maier, M. Dai, and J.-P. Gattuso. 2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology 61:291–305, https://doi.org/10.3354/ame01446.

Liu, Y., Z. Peng, R. Zhou, S. Song, W. Liu, C.-F. You, Y.-P. Lin, K. Yu, C.-C. Wu, G. Wei, and others. 2014. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Scientific Reports 4, 5148, https://doi.org/10.1038/srep05148.

Mackey, K.R.M., J.J. Morris, F.M.M. Morel, and S.A. Kranz. 2015. Response of photosynthesis to ocean acidification. Oceanography 28(2):74–91, https://doi.org/10.5670/oceanog.2015.33.

Manzello, D.P., J.A. Kleypas, D.A. Budd, C.M. Eakin, P.W. Glynn, and C. Langdon. 2008. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proceedings of the National Academy of Sciences of the United States of America 105:10,450–10,455, https://doi.org/10.1073/pnas.0712167105.

Martz, T.R., K.L. Daly, R.H. Byrne, J.H. Stillman, and D. Turk. 2015. Technology for ocean acidification research: Needs and availability. Oceanography 28(2):40–47, https://doi.org/10.5670/oceanog.2015.30.

Marubini, F., and M. Atkinson. 1999. Effects of lowered pH and elevated nitrate on coral calcification. Marine Ecology Progress Series 188:117–121, https://doi.org/10.3354/meps188117.

McCulloch, M., J. Falter, J. Trotter, and P. Montagna. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2:623-627, https://doi.org/10.1038/nclimate1473.

McGinnis, D.F., M. Schmidt, T. Delsontro, S. Themann, L. Rovelli, A. Reitz, and P. Linke. 2011. Discovery of a natural CO2 seep in the German North Sea: Implications for shallow dissolved gas and seep detection. Journal of Geophysical Research 116, C03013, https://doi.org/10.1029/2010JC006557.

Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.

Pelejero, C., E. Calvo, and O. Hoegh-Guldberg. 2010. Paleo-perspectives on ocean acidification. Trends in Ecology & Evolution 25:332–344, https://doi.org/10.1016/j.tree.2010.02.002.

Petraitis, P. 2013. Multiple Stables States in Natural Ecosystems. Oxford, UK, Oxford University Press, 200 pp.

Royal Society. 2005. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. The Royal Society, London, 57 pp., https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2005/9634.pdf.

Reum, J.C., S.R. Alin, C.J. Harvey, 2015. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsu231.

Ridgwell, A., and R.E. Zeebe. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters 234:299–315, https://doi.org/10.1016/j.epsl.2005.03.006.

Riebesell, U., R. Bellerby, H.-P. Grossart, and F. Thingstad. 2008. Mesocosm CO2 perturbation studies: From organism to community level. Biogeosciences 5:1,157–1,164, https://doi.org/10.5194/bg-5-1157-2008.

Riebesell, U., J. Czerny, K.V. Bröckel, 2012. Technical note: A mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences Discussions, 9:12,985–13,017, https://doi.org/10.5194/bg-10-1835-2013.

Riebesell, U., V.J. Fabry, L. Hansson, and J.-P. Gattuso. 2010. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union Luxembourg, 260 pp.

Riebesell, U., J.-P. Gattuso, T. Thingstad, and J. Middelburg. 2013. Preface: Arctic Ocean acidification: Pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5,619–5,626, https://doi.org/10.5194/bg-10-5619-2013.

Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2 induced ocean acidification. Geology 37:1,131–1,134, https://doi.org/10.1130/G30210A.1.

Sale, P., and N. Tolimieri. 2000. Density dependence at some time and place? Oecologia 124:166–171, https://doi.org/10.1007/s004420050003.

Shaw, E.C., B.I. McNeil, B. Tilbrook, R. Matear, and M.L. Bates. 2013. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions. Global Change Biology 19:1,632–1,641, https://doi.org/10.1111/gcb.12154.

Silverman, J., B. Lazar, L. Cao, K. Caldeira, and J. Erez. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36, L05606, https://doi.org/10.1029/2008GL036282.

Six, K.D., S. Kloster, T. Ilyina, S.D. Archer, K. Zhang, and E. Maier-Reimer. 2013. Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nature Climate Change 3:975–978, https://doi.org/10.1038/nclimate1981.

Smith, A.D., and A. Roth. 1979. Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. Marine Biology 52:217–225, https://doi.org/10.1007/BF00398135.

Smith, S.V., and R.W. Buddemeier. 1992. Global change and coral reef ecosystems. Annual Review of Ecology and Systematics 23:89–118, https://doi.org/10.1146/annurev.es.23.110192.000513.

Sunday, J.M., P. Calosi, S. Dupont, P.L. Munday, J.H. Stillman, and T.B. Reusch. 2014. Evolution in an acidifying ocean. Trends in Ecology & Evolution 29:117–125, https://doi.org/10.1016/j.tree.2013.11.001.

Tatters, A.O., M.Y. Roleda, A. Schnetzer, F. Fu, C.L. Hurd, P.W. Boyd, D.A. Caron, A.A.Y. Lie, L.J. Hoffmann, and D.A. Hutchins. 2013. Short-and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2012.0437.

Walker, E., A.V. Hernandez, and M.W. Kattan. 2008. Meta-analysis: Its strengths and limitations. Cleveland Clinic Journal of Medicine 75:431–439.

Yates, K.K., and R.B. Halley. 2006. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuaries and Coasts 29:24–39, https://doi.org/10.1007/BF02784696.

Yates, K.K., C. Turley, B.M. Hopkinson, A.E. Todgham, J.N. Cross, H. Greening, P. Williamson, R. Van Hooidonk, D.D. Deheyn, and Z. Johnson. 2015. Transdisciplinary science: A path to understanding the interactions among ocean acidification, ecosystems, and society. Oceanography 28(2):212–225, https://doi.org/10.5670/oceanog.2015.43.

Zachos, J.C., U. Rohl, S.A. Schellenberg, A. Siuijs, D.A Hodell, D.C. Kelly, E. Thomas, M. Nicolo, I. Raffi, L.J. Lourens, and others. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1,611–1,615, https://doi.org/10.1126/science.1109004.

Zimmerman, R.C., D.G. Kohrs, D.L. Steller, and R.S. Alberte. 1995. Carbon partitioning in eelgrass (regulation by photosynthesis and the response to daily light-dark cycles). Plant Physiology 108:1,665–1,671.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.